Genome最新文献

筛选
英文 中文
Peroxisome inter-organelle cooperation in Drosophila. 果蝇的过氧物酶体细胞器间合作
IF 2.3 3区 生物学
Genome Pub Date : 2025-01-01 Epub Date: 2024-10-29 DOI: 10.1139/gen-2024-0082
Andy Y Cheng, Andrew J Simmonds
{"title":"Peroxisome inter-organelle cooperation in <i>Drosophila</i>.","authors":"Andy Y Cheng, Andrew J Simmonds","doi":"10.1139/gen-2024-0082","DOIUrl":"10.1139/gen-2024-0082","url":null,"abstract":"<p><p>Many cellular functions are compartmentalized within the optimized environments of organelles. However, processing or storage of metabolites from the same pathway can occur in multiple organelles. Thus, spatially separated organelles need to cooperate functionally. Coordination between organelles in different specialized cells is also needed, with shared metabolites passed via circulation. Peroxisomes are membrane-bounded organelles responsible for cellular redox and lipid metabolism in eukaryotic cells. Peroxisomes coordinate with other organelles including mitochondria, endoplasmic reticulum, lysosomes, and lipid droplets. This functional coordination requires, or is at least enhanced by, direct contact between peroxisomes and other organelles. Peroxisome dysfunction in humans leads to multiorgan effects including neurological, metabolic, developmental, and age-related diseases. Thus, increased understanding of peroxisome coordination with other organelles, especially cells in various organs is essential. <i>Drosophila melanogaster</i> (fruit fly) has emerged recently as an effective animal model for understanding peroxisomes. Here we review current knowledge of pathways regulating coordination between peroxisomes with other organelles in flies, speculating about analogous roles for conserved <i>Drosophila</i> genes encoding proteins with known organelle coordinating roles in other species.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-12"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A quick guide to the calcium-dependent protein kinase family in Brassica napus. 油菜钙依赖性蛋白激酶家族快速指南。
IF 2.3 3区 生物学
Genome Pub Date : 2025-01-01 Epub Date: 2024-11-05 DOI: 10.1139/gen-2024-0053
Virginia Natali Miguel, Jacqueline Monaghan
{"title":"A quick guide to the calcium-dependent protein kinase family in <i>Brassica napus</i>.","authors":"Virginia Natali Miguel, Jacqueline Monaghan","doi":"10.1139/gen-2024-0053","DOIUrl":"10.1139/gen-2024-0053","url":null,"abstract":"<p><p><i>Brassica napus</i>, commonly known as rapeseed or canola, is an economically valuable oilseed crop grown throughout Canada that currently faces several challenges due to industrial farming practices as well as a changing climate. Calcium-dependent protein kinases (CDPKs) are key regulators of stress signaling in multiple plant species. CDPKs sense changes in cellular calcium levels via a calmodulin-like domain and are able to respond to these changes via their protein kinase domain. In this mini-review, we provide a quick guide to BnaCDPKs. We present an updated phylogeny of the BnaCDPK family in relation to CDPKs from <i>Arabidopsis thaliana</i> and <i>Oryza sativa</i> and we provide a standardized nomenclature for the large BnaCDPK family that contains many co-orthologs. We analyze expression patterns of <i>BnaCDPKs</i> across tissue types and in response to abiotic and biotic stresses, and we summarize known functions of BnaCDPKs. We hope this guide is useful to anyone interested in exploring the prospect of harnessing the potential of <i>BnaCDPKs</i> in the generation of elite cultivars of <i>B. napus</i>.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-12"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AVITI as an alternative to Illumina for low-cost genome-wide genotyping. AVITI作为Illumina低成本全基因组基因分型的替代品。
IF 2.3 3区 生物学
Genome Pub Date : 2025-01-01 DOI: 10.1139/gen-2024-0068
Maxime de Ronne, Brian Boyle, Davoud Torkamaneh
{"title":"AVITI as an alternative to Illumina for low-cost genome-wide genotyping.","authors":"Maxime de Ronne, Brian Boyle, Davoud Torkamaneh","doi":"10.1139/gen-2024-0068","DOIUrl":"10.1139/gen-2024-0068","url":null,"abstract":"<p><p>Advancements in sequencing technologies have dramatically transformed genomics research by enabling the analysis of genetic information with unprecedented scale and efficiency. Next-generation sequencing, renowned for its high-throughput capabilities, has significantly reduced costs and expanded the scope of sequencing applications. Among these, sequencing by synthesis on Illumina systems is predominant, favored for its accuracy and cost-effectiveness. However, emerging technologies like Element Biosciences' sequencing by Avidity (AVITI) are beginning to challenge this dominance. In this study, we sequenced and genotyped a library of 40 <i>Cannabis</i> samples using both the AVITI and Illumina NovaSeq systems. After filtering out low-quality variants, both technologies showed an 81.2% overlap with 98.9% concordance in genotype calls. AVITI stands out for its flexibility and reduced per-base costs, presenting a viable option particularly for mid-sized laboratories. As the scientific community continues to seek ways to lower genotyping expenses, the combination of the AVITI system with NanoGBS library preparation offers a cost-effective solution adaptable to a wide range of project sizes.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-4"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143457576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A phylogenetic perspective of chromosome evolution in Formicidae. 从系统进化的角度看姬蜂科的染色体进化。
IF 2.3 3区 生物学
Genome Pub Date : 2025-01-01 Epub Date: 2024-12-16 DOI: 10.1139/gen-2024-0124
Danon Clemes Cardoso, Maykon Passos Cristiano
{"title":"A phylogenetic perspective of chromosome evolution in Formicidae.","authors":"Danon Clemes Cardoso, Maykon Passos Cristiano","doi":"10.1139/gen-2024-0124","DOIUrl":"10.1139/gen-2024-0124","url":null,"abstract":"<p><p>Chromosomes, as carriers of genes, are the fundamental units of heredity, with the eukaryotic genome divided into multiple chromosomes. Each species typically has a consistent number of chromosomes within its lineage. Ants, however, display remarkable diversity in chromosome numbers, and previous studies have shown that this variation may correlate with ant diversity. As ants evolved, various karyotypes emerged, primarily through chromosomal fissions, leading to an increase in chromosome number and a decrease in chromosome size. In this study, we investigate chromosome evolution in ants from a phylogenetic perspective using ancestral reconstruction. Our analysis indicates that the most recent common ancestor of ants had an ancestral haploid chromosome number of 11, likely composed of biarmed chromosomes. The bimodal distribution of karyotypes and the trend toward increased chromosome numbers align with previous assumptions. However, both dysploidy and ploidy changes have been indicated as likely mechanisms of chromosome number evolution. Descending dysploidy occurs consistently throughout the phylogeny, while changes in ploidy are believed to occur occasionally within the subfamilies during genus diversification. We propose, based on our results and previous evidence (e.g., genome size in ants), that both fusions and fissions contribute equally to karyotype changes in Formicidae. Additionally, changes in ploidy should not be fully ignored, as they can occur across specific lineages.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-10"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142835349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosomal and molecular perspectives on Potamotrygon motoro (Müller & Henle, 1841) from central Amazon. 从染色体和分子的角度观察来自亚马逊中部的摩托马铃薯(m<s:1> ller & Henle, 1841)。
IF 2.3 3区 生物学
Genome Pub Date : 2025-01-01 DOI: 10.1139/gen-2024-0153
Alex M V Ferreira, Patrik F Viana, Leandro Marajó, Eliana Feldberg
{"title":"Chromosomal and molecular perspectives on <i>Potamotrygon motoro</i> (Müller & Henle, 1841) from central Amazon.","authors":"Alex M V Ferreira, Patrik F Viana, Leandro Marajó, Eliana Feldberg","doi":"10.1139/gen-2024-0153","DOIUrl":"10.1139/gen-2024-0153","url":null,"abstract":"<p><p>Cytogenetic studies on <i>Potamotrygon motoro</i> (Müller & Henle, 1841) are limited to classical cytogenetic techniques, but they do reveal great karyotypic variation. The main differences are related to the karyotypic formula and the absence/presence of sex chromosome systems. Thus, this study aimed to expand knowledge of the karyotypic composition of <i>Potamotrygon motoro</i> from different locations of the Central Amazon using Fluorescence in situ Hybridization to investigate the distribution of ribosomal DNAs (rDNA) and microsatellites sequences (SSRs). In addition, we used the mitochondrial DNA cytochrome oxidase subunit I (mtDNA COI) to perform neighbor-joining analysis to investigate the relationships among the individuals sampled. In our study, <i>Potamotrygon motoro</i> presented 2n = 66 chromosomes, with 18m + 12sm + 10st + 26a and heterochromatic blocks on centromeric region of all chromosomes. The 18S rDNA is present in three chromosomal pairs and 5S rDNA is located in the pair 16, which is a feature shared among freshwater stingray species. Regarding the mapping of SSRs, dinucleotide sequences showed a greater number of sites, usually on terminal regions of chromosomal pairs, with an accumulation throughout the long arms of the pair 17. Our molecular analyses did not reveal differences between the sequences used. In general, the karyotypic differences previously reported for <i>Potamotrygon motoro</i> indicate the presence of different cytotypes within the species.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"68 ","pages":"1-9"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143499364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome assembly, analysis, and mining of Kocuria flava NIO_001: a thiopeptide antibiotic synthesizing bacterium isolated from marine sponge. 黄古菌NIO_001的基因组组装、分析与挖掘。一种从海绵中分离的硫肽抗生素合成细菌。
IF 2.3 3区 生物学
Genome Pub Date : 2025-01-01 DOI: 10.1139/gen-2024-0162
Kartik Juyal, Heena Devkar, Aabha Deshpande, Narsinh L Thakur
{"title":"Genome assembly, analysis, and mining of <i>Kocuria flava</i> NIO_001: a thiopeptide antibiotic synthesizing bacterium isolated from marine sponge.","authors":"Kartik Juyal, Heena Devkar, Aabha Deshpande, Narsinh L Thakur","doi":"10.1139/gen-2024-0162","DOIUrl":"10.1139/gen-2024-0162","url":null,"abstract":"<p><p>Genome mining has been a key strategy for finding biosynthetic gene clusters (BGCs) coding for secondary metabolites in the recent past. Actinomycetia is among the important bacterial classes found in marine habitats, renowned for producing high-value secondary metabolites. <i>Kocuria</i> is one such gram-positive bacteria that has been reported to produce the potent antibacterial molecule kocurin/PM181104. The objective of this study was to confirm the production of kocurin/PM181104 followed by sequencing, assembly, and mining of the genome of <i>Kocuria flava</i> NIO_001. AntiSMASH analysis predicted the BGCs involved in the production of kocurin along with eight promising secondary metabolite-producing BGCs including non-alpha poly-amino acids like e-polylysin (NAPAA), ribosomally synthesized and post-translationally modified peptide like (RiPP-like), non-ribosomal peptide synthetase like (NRPS-like), NRPS-independent IucA/IucC-like siderophores (NI-siderophore), type III polyketide synthase (T3PKS), ε-Poly-l-lysine (NAPAA), terpene, and betalactone. Kyoto Encyclopedia for Genes and Genomes pathway analysis showed the presence of biosynthetic pathways involved in terpenoid backbone synthesis and the presence of certain hemolysin-like proteins. The present investigation is highly valuable for designing experiments to overproduce this potent antibiotic molecule by using a reverse engineering approach.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-10"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143624311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The repetitive DNA landscape in the brizantha agamic complex of Urochloa P. Beauv. 尿藻P. Beauv 'brizantha' agamic复合体中的重复DNA景观。
IF 2.3 3区 生物学
Genome Pub Date : 2025-01-01 DOI: 10.1139/gen-2024-0096
Caio T Rodrigues Correa, Magdalena Vaio, Sanzio C L Barrios, Cacilda B do Valle, Giovana A Torres, Vânia H Techio
{"title":"The repetitive DNA landscape in the <i>brizantha</i> agamic complex of <i>Urochloa</i> P. Beauv.","authors":"Caio T Rodrigues Correa, Magdalena Vaio, Sanzio C L Barrios, Cacilda B do Valle, Giovana A Torres, Vânia H Techio","doi":"10.1139/gen-2024-0096","DOIUrl":"10.1139/gen-2024-0096","url":null,"abstract":"<p><p><i>Urochloa</i> P. Beauv. (formerly classified as <i>Brachiaria</i> (Trin.) Griseb<i>.</i>) is a genus of African perennial grasses that is extensively cultivated in tropical countries for cattle nutrition. Three of the most economically relevant species, <i>Urochloa brizantha, Urochloa decumbens</i>, and <i>Urochloa ruziziensis</i>, form the <i>brizantha</i> agamic complex, which includes allopolyploid series with distinct subgenomes. Investigating the composition and organization of repetitive DNA, a major component of grass genomes, can provide insights into their genomic relationships and evolutionary history. This study aimed to characterize the repetitive DNA landscape of selected <i>Urochloa</i> species belonging to the <i>b</i> <i>rizantha</i> agamic complex; identify and compare major repeat classes across species; and evaluate their potential as cytogenetic markers on mitotic chromosomes using fluorescent <i>in situ</i> hybridization (FISH). Clustering analysis revealed that repetitive DNA constitutes 56%-65% of the genomes, with Ty3/Gypsy retrotransposons, particularly the <i>Athila</i> and <i>Retand</i> lineages, representing the most abundant repeat class. <i>Urochloa decumbens</i> exhibited the highest proportion of Ty3/Gypsy retrotransposons, while <i>U. ruziziensis</i> had the highest satellite DNA content. The chromosomal location of representative satellites (UroSat-1a, UroSat-2a, and UroSat-3) was determined in all three species via FISH. UroSat-1a was detected in all centromeres, while UroSat-2a and UroSat-3 signals varied in number and position. Our findings validate the use of satDNA as cytogenetic markers in the <i>brizantha</i> agamic complex of <i>Urochloa</i> and revealed genomic relationships among different species and ploidy levels.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-13"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circadian rhythm and immunity: decoding chrono-immunology using the model organism Drosophila melanogaster. 昼夜节律和免疫:使用模式生物黑腹果蝇解码时间免疫学。
IF 2.3 3区 生物学
Genome Pub Date : 2025-01-01 DOI: 10.1139/gen-2025-0003
Arash Mohammadi Matak, Yizhu Mu, Seyedeh Mahdiye Mohati, Stephanie Makdissi, Francesca Di Cara
{"title":"Circadian rhythm and immunity: decoding chrono-immunology using the model organism <i>Drosophila melanogaster</i>.","authors":"Arash Mohammadi Matak, Yizhu Mu, Seyedeh Mahdiye Mohati, Stephanie Makdissi, Francesca Di Cara","doi":"10.1139/gen-2025-0003","DOIUrl":"10.1139/gen-2025-0003","url":null,"abstract":"<p><p>Circadian rhythms are important cellular pathways first described for their essential role in helping organisms adjust to the 24 h day-night cycle and synchronize physiological and behavioral functions. Most organisms have evolved a circadian central clock to anticipate daily environmental changes in light, temperature, and mate availability. It is now understood that multiple clocks exist in organisms to regulate the functions of specific organs. Epidemiological studies in humans reported that disruption of the circadian rhythms caused by sleep deprivation is linked to the onset of immune-related conditions, suggesting the importance of circadian regulation of immunity. Mechanistic studies to define how circadian clocks and immune responses interact have profound implications for human health. However, elucidating the clocks and their tissue-specific functions has been challenging in mammals. Many studies using simple model organisms such as <i>Drosophila melanogaster</i> have been pioneering in discovering that the clock controls innate immune responses and immune challenges can impact circadian rhythms and/or their outcomes. In this review, we will report genetic studies using the humble fruit fly that identified the existence of reciprocal interactions between the circadian pathway and innate immune signaling, contributing to elucidate mechanisms in the growing field of chrono-immunology.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-18"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143763889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosomal diversity in Crematogaster Lund, 1831 (Formicidae: Myrmicinae) from the Amazon rainforest. 亚马逊雨林中 Crematogaster Lund, 1831 (Formicidae: Myrmicinae) 的染色体多样性。
IF 2.3 3区 生物学
Genome Pub Date : 2025-01-01 Epub Date: 2024-09-03 DOI: 10.1139/gen-2023-0130
Linda Inês Silveira, Gisele Amaro Teixeira, Luísa Antônia Campos Barros, Jorge Abdala Dergam, Hilton Jeferson Alves Cardoso de Aguiar
{"title":"Chromosomal diversity in <i>Crematogaster</i> Lund, 1831 (Formicidae: Myrmicinae) from the Amazon rainforest.","authors":"Linda Inês Silveira, Gisele Amaro Teixeira, Luísa Antônia Campos Barros, Jorge Abdala Dergam, Hilton Jeferson Alves Cardoso de Aguiar","doi":"10.1139/gen-2023-0130","DOIUrl":"10.1139/gen-2023-0130","url":null,"abstract":"<p><p><i>Crematogaster</i> Lund, 1831 is a speciose ant genus globally distributed and easily recognizable. Although biogeographical theories explain some variation among Neotropical <i>Crematogaster</i>, several taxonomical issues remain unresolved. While cytogenetic approaches can help to delimit species, cytogenetic data are only available for 18 taxa. In this study, classical and molecular cytogenetic analyses were performed on five <i>Crematogaste</i>r species from the Brazilian Amazon to identify species-specific patterns. Two different cytotypes, both with 2<i>n</i> = 22 chromosomes were observed in <i>Crematogaster erecta</i> Mayr, 1866, suggesting the presence of cryptic species, although with different karyotypic formulas. <i>Crematogaster</i> aff. <i>erecta</i> had 2<i>n</i> = 28, while <i>Crematogaster limata</i> Smith, 1858, <i>Crematogaster tenuicula</i> Forel, 1904, and <i>Crematogaster</i> sp. had 2<i>n</i> = 38. The telomeric motif (TTAGG) <i><sub>n</sub></i> was found in all five species, and the (TCAGG) <i><sub>n</sub></i> motif was detected in the telomeres of <i>C. limata</i>. This peculiar motif was also detected in the centromeric regions of <i>C. erecta</i> cytotype I. The microsatellite (GA) <i><sub>n</sub></i> was dispersed in the chromosomes of all species studied, which also had a single intrachromosomal rDNA site. The cytogenetic results revealed notable interspecific and intraspecific variation, which suggests different chromosomal rearrangements involved in the origin of these variations, also highlighting the taxonomic value of cytogenetic data on <i>Crematogaster</i>.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-12"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolution of genomic organization through chromosomal rearrangements in Arctic charr (Salvelinus alpinus). 北极鲑(Salvelinus alpinus)基因组组织的染色体重排进化。
IF 2.3 3区 生物学
Genome Pub Date : 2025-01-01 DOI: 10.1139/gen-2024-0180
Christine L Ouellet-Fagg, Anne A Easton, Kevin J Parsons, Cameron M Nugent, Roy G Danzmann, Moira M Ferguson
{"title":"The evolution of genomic organization through chromosomal rearrangements in Arctic charr (<i>Salvelinus alpinus</i>).","authors":"Christine L Ouellet-Fagg, Anne A Easton, Kevin J Parsons, Cameron M Nugent, Roy G Danzmann, Moira M Ferguson","doi":"10.1139/gen-2024-0180","DOIUrl":"https://doi.org/10.1139/gen-2024-0180","url":null,"abstract":"<p><p>Chromosomal rearrangements (CRs) can play an important role in evolutionary diversification by preserving linkage among favourable alleles through reduced recombination and/or by reducing hybrid fitness due to genomic incompatibilities. Our goal was to determine to what extent CRs contribute to known patterns of genetic variation in Arctic charr (<i>Salvelinus alpinus</i>). To address this goal, we compared genetic linkage maps to identify whole arm CRs and smaller scale structural variants (SVs) such as translocations/transpositions and inversions found in groups of populations that reflect the temporal sequence of geographic isolation events. If CRs contribute to genetic differentiation, we expected that CRs would be specific to glacial lineages, geographic clusters of populations within lineages, and sympatric morphs. We detected fusions and fissions of whole chromosome arms and SV involving translocations/transpositions of the sex-determining gene (<i>sdY</i>) and inversions. Several CRs were shared across populations from the Arctic and Atlantic glacial lineages, Canadian and Icelandic populations within the Atlantic lineage, between two Icelandic populations and sympatric morphs within Icelandic populations, suggesting that their origin predates geographic isolation in glacial refugia. Other CRs were specific to single populations, which suggests a more recent origin of these variants in refugia, during post-glacial recolonization and/or in contemporary populations. Thus, CRs contribute relatively little to known patterns of genetic differentiation at different geographic scales but represent a pool of standing genetic variation for evolution.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"68 ","pages":"1-19"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144011729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信