Alex M V Ferreira, Patrik F Viana, Leandro Marajó, Eliana Feldberg
{"title":"Chromosomal and molecular perspectives on <i>Potamotrygon motoro</i> (Müller & Henle, 1841) from central Amazon.","authors":"Alex M V Ferreira, Patrik F Viana, Leandro Marajó, Eliana Feldberg","doi":"10.1139/gen-2024-0153","DOIUrl":null,"url":null,"abstract":"<p><p>Cytogenetic studies on <i>Potamotrygon motoro</i> (Müller & Henle, 1841) are limited to classical cytogenetic techniques, but they do reveal great karyotypic variation. The main differences are related to the karyotypic formula and the absence/presence of sex chromosome systems. Thus, this study aimed to expand knowledge of the karyotypic composition of <i>Potamotrygon motoro</i> from different locations of the Central Amazon using Fluorescence in situ Hybridization to investigate the distribution of ribosomal DNAs (rDNA) and microsatellites sequences (SSRs). In addition, we used the mitochondrial DNA cytochrome oxidase subunit I (mtDNA COI) to perform neighbor-joining analysis to investigate the relationships among the individuals sampled. In our study, <i>Potamotrygon motoro</i> presented 2n = 66 chromosomes, with 18m + 12sm + 10st + 26a and heterochromatic blocks on centromeric region of all chromosomes. The 18S rDNA is present in three chromosomal pairs and 5S rDNA is located in the pair 16, which is a feature shared among freshwater stingray species. Regarding the mapping of SSRs, dinucleotide sequences showed a greater number of sites, usually on terminal regions of chromosomal pairs, with an accumulation throughout the long arms of the pair 17. Our molecular analyses did not reveal differences between the sequences used. In general, the karyotypic differences previously reported for <i>Potamotrygon motoro</i> indicate the presence of different cytotypes within the species.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"68 ","pages":"1-9"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/gen-2024-0153","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cytogenetic studies on Potamotrygon motoro (Müller & Henle, 1841) are limited to classical cytogenetic techniques, but they do reveal great karyotypic variation. The main differences are related to the karyotypic formula and the absence/presence of sex chromosome systems. Thus, this study aimed to expand knowledge of the karyotypic composition of Potamotrygon motoro from different locations of the Central Amazon using Fluorescence in situ Hybridization to investigate the distribution of ribosomal DNAs (rDNA) and microsatellites sequences (SSRs). In addition, we used the mitochondrial DNA cytochrome oxidase subunit I (mtDNA COI) to perform neighbor-joining analysis to investigate the relationships among the individuals sampled. In our study, Potamotrygon motoro presented 2n = 66 chromosomes, with 18m + 12sm + 10st + 26a and heterochromatic blocks on centromeric region of all chromosomes. The 18S rDNA is present in three chromosomal pairs and 5S rDNA is located in the pair 16, which is a feature shared among freshwater stingray species. Regarding the mapping of SSRs, dinucleotide sequences showed a greater number of sites, usually on terminal regions of chromosomal pairs, with an accumulation throughout the long arms of the pair 17. Our molecular analyses did not reveal differences between the sequences used. In general, the karyotypic differences previously reported for Potamotrygon motoro indicate the presence of different cytotypes within the species.
期刊介绍:
Genome is a monthly journal, established in 1959, that publishes original research articles, reviews, mini-reviews, current opinions, and commentaries. Areas of interest include general genetics and genomics, cytogenetics, molecular and evolutionary genetics, developmental genetics, population genetics, phylogenomics, molecular identification, as well as emerging areas such as ecological, comparative, and functional genomics.