Sequence-based Identification of Polyamine Oxidase Genes in Sorghum bicolor L.

IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Genome Pub Date : 2025-01-29 DOI:10.1139/gen-2024-0143
Heba Ebeed, Mohamed El-Zonkorany, Eman Habib, Esraa Ali, Ahmed Zahran, Aya Hamdy Ragab
{"title":"Sequence-based Identification of Polyamine Oxidase Genes in Sorghum bicolor L.","authors":"Heba Ebeed, Mohamed El-Zonkorany, Eman Habib, Esraa Ali, Ahmed Zahran, Aya Hamdy Ragab","doi":"10.1139/gen-2024-0143","DOIUrl":null,"url":null,"abstract":"<p><p>Polyamine oxidase (PAOs) are enzymes associated with polyamine catabolism and play important roles in growth and development and stress tolerance of plants. In the present study, genome-wide discovery and analysis of the PAO family in sorghum was done utilizing model PAO of Arabidopsis. Six PAO genes were found using publicly available genomic data. Sorghum has the PAO gene representatives distributed throughout four chromosomes (chr1, 3, 6, and 7), and most members have 8 to 9 exons. The molecular weights of PAO proteins range from 53 to 63 kDa. PAO proteins have a theoretical PI between 5.2 and 8.1. The identification and characterization of PAO gene members in sorghum laying the foundation for further experimental studies elucidating their roles in growth, development, and stress responses, ultimately contributing to our understanding of plant biology, with significant implications for plant breeding by providing valuable insights into potential targets for enhancing stress tolerance and improving crop performance.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/gen-2024-0143","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyamine oxidase (PAOs) are enzymes associated with polyamine catabolism and play important roles in growth and development and stress tolerance of plants. In the present study, genome-wide discovery and analysis of the PAO family in sorghum was done utilizing model PAO of Arabidopsis. Six PAO genes were found using publicly available genomic data. Sorghum has the PAO gene representatives distributed throughout four chromosomes (chr1, 3, 6, and 7), and most members have 8 to 9 exons. The molecular weights of PAO proteins range from 53 to 63 kDa. PAO proteins have a theoretical PI between 5.2 and 8.1. The identification and characterization of PAO gene members in sorghum laying the foundation for further experimental studies elucidating their roles in growth, development, and stress responses, ultimately contributing to our understanding of plant biology, with significant implications for plant breeding by providing valuable insights into potential targets for enhancing stress tolerance and improving crop performance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome
Genome 生物-生物工程与应用微生物
CiteScore
5.30
自引率
3.20%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Genome is a monthly journal, established in 1959, that publishes original research articles, reviews, mini-reviews, current opinions, and commentaries. Areas of interest include general genetics and genomics, cytogenetics, molecular and evolutionary genetics, developmental genetics, population genetics, phylogenomics, molecular identification, as well as emerging areas such as ecological, comparative, and functional genomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信