{"title":"The sialyl-Tn antigen synthase genes regulates migration-proliferation dichotomy in prostate cancer cells under hypoxia.","authors":"Daiki Yamamoto, Hiroshi Hongo, Takeo Kosaka, Natsumi Aoki, Mototsugu Oya, Toshinori Sato","doi":"10.1007/s10719-023-10104-z","DOIUrl":"https://doi.org/10.1007/s10719-023-10104-z","url":null,"abstract":"<p><p>A low-oxygen (hypoxia) tumor microenvironment can facilitate chemotherapy and radiation therapy resistance in tumors and is associated with a poor prognosis. Hypoxia also affects PCa (prostate cancer) phenotype transformation and causes therapeutic resistance. Although O-glycans are known to be involved in the malignancy of various cancers under hypoxia, the expression and function of O-glycans in PCa are not well understood. In this study, the saccharide primer method was employed to analyze O-glycan expression in PCa cells. Results showed that the expression of sTn antigens was increased in PCa cells under hypoxia. Furthermore, it was found that ST6GalNAc1, the sTn antigen synthase gene, was involved in the migration-proliferation dichotomy and drug resistance in PCa cells under hypoxia. The results of this study will contribute to the development of novel diagnostic markers and drug targets for PCa under hypoxia.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":"40 2","pages":"199-212"},"PeriodicalIF":3.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9280960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simultaneous and sialic acid linkage-specific N- and O-linked glycan analysis by ester-to-amide derivatization.","authors":"Hisatoshi Hanamatsu, Yoshiaki Miura, Takashi Nishikaze, Ikuko Yokota, Kentaro Homan, Tomohiro Onodera, Yoshihiro Hayakawa, Norimasa Iwasaki, Jun-Ichi Furukawa","doi":"10.1007/s10719-023-10109-8","DOIUrl":"https://doi.org/10.1007/s10719-023-10109-8","url":null,"abstract":"<p><p>Characterization of O-glycans linked to serine or threonine residues in glycoproteins has mostly been achieved using chemical reaction approaches because there are no known O-glycan-specific endoglycosidases. Most O-glycans are modified with sialic acid residues at the non-reducing termini through various linkages. In this study, we developed a novel approach for sialic acid linkage-specific O-linked glycan analysis through lactone-driven ester-to-amide derivatization combined with non-reductive β-elimination in the presence of hydroxylamine. O-glycans released by non-reductive β-elimination were efficiently purified using glycoblotting via chemoselective ligation between carbohydrates and a hydrazide-functionalized polymer, followed by modification of methyl or ethyl ester groups of sialic acid residues on solid-phase. In-solution lactone-driven ester-to-amide derivatization of ethyl-esterified O-glycans was performed, and the resulting sialylated glycan isomers were discriminated by mass spectrometry. In combination with PNGase F digestion, we carried out simultaneous, quantitative, and sialic acid linkage-specific N- and O-linked glycan analyses of a model glycoprotein and human cartilage tissue. This novel glycomic approach will facilitate detailed characterization of biologically relevant sialylated N- and O-glycans on glycoproteins.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":"40 2","pages":"259-267"},"PeriodicalIF":3.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9281580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesca Micoli, Maria Rosaria Romano, Filippo Carboni, Roberto Adamo, Francesco Berti
{"title":"Strengths and weaknesses of pneumococcal conjugate vaccines.","authors":"Francesca Micoli, Maria Rosaria Romano, Filippo Carboni, Roberto Adamo, Francesco Berti","doi":"10.1007/s10719-023-10100-3","DOIUrl":"https://doi.org/10.1007/s10719-023-10100-3","url":null,"abstract":"<p><p>Multivalent vaccines addressing an increasing number of Streptococcus pneumoniae types (7-, 10-, 13-, 15-, 20-valent) have been licensed over the last 22 years. The use of polysaccharide-protein conjugate vaccines has been pivotal in reducing the incidence of invasive pneumococcal disease despite the emergence of non-vaccine serotypes. Notwithstanding its undoubtable success, some weaknesses have called for continuous improvement of pneumococcal vaccination. For instance, despite their inclusion in pneumococcal conjugate vaccines, there are challenges associated with some serotypes. In particular, Streptococcus pneumoniae type 3 remains a major cause of invasive pneumococcal disease in several countries.Here a deep revision of the strengths and weaknesses of the licensed pneumococcal conjugate vaccines and other vaccine candidates currently in clinical development is reported.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":"40 2","pages":"135-148"},"PeriodicalIF":3.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027807/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9279280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Shen, Shangteng Wang, Quntao Liang, Joshua S Sharp, Zheng Wei
{"title":"Characterization and antioxidant activities of glycosaminoglycans from dried leech.","authors":"Tao Shen, Shangteng Wang, Quntao Liang, Joshua S Sharp, Zheng Wei","doi":"10.1007/s10719-023-10105-y","DOIUrl":"https://doi.org/10.1007/s10719-023-10105-y","url":null,"abstract":"<p><p>Dried leech (Whitmania pigra whitman) has been widely used as a traditional animal-based Chinese medicine. Dried leech extracts have been reported to have various biological activities that are often associated with mammalian glycosaminoglycans. However, their presence and possible structural characteristics within dried leech were previously unknown. In this study, glycosaminoglycans were isolated from dried leech for the first time and their structures were analyzed by the combination of Fourier-transform infrared spectroscopy, liquid chromatography-ion trap/time-of-flight mass spectrometry and polyacrylamide gel electrophoresis. Heparan sulfate and chondroitin sulfate/dermatan sulfate were detected in dried leech with varied disaccharide compositions and possess a heterogeneous structure. Heparan sulfate species possess an equal amount of total 2-O-sulfated, N-sulfated and acetylated disaccharides, while chondroitin sulfate /dermatan sulfate contain high content of 4-O-sulfated disaccharides. Also, the quantitative analysis revealed that the contents of heparan sulfate and chondroitin/dermatan sulfate in dried leech varied significantly, with chondroitin/dermatan sulfate being by far the most abundant. This novel structural information could help clarify the possible involvement of these polysaccharides in the biological activities of the dried leech. Furthermore, leech glycosaminoglycans showed a strong ABTS radical scavenging ability, which suggests the potential of leech polysaccharides for exploitation in the nutraceutical and pharmaceutical industries.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":"40 2","pages":"169-178"},"PeriodicalIF":3.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9272888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mariliis Klaas, Stuart Dubock, David J P Ferguson, Paul R Crocker
{"title":"Sialoadhesin (CD169/Siglec-1) is an extended molecule that escapes inhibitory cis-interactions and synergizes with other macrophage receptors to promote phagocytosis.","authors":"Mariliis Klaas, Stuart Dubock, David J P Ferguson, Paul R Crocker","doi":"10.1007/s10719-022-10097-1","DOIUrl":"https://doi.org/10.1007/s10719-022-10097-1","url":null,"abstract":"<p><p>Sialoadhesin (CD169/Siglec-1, Sn) is a macrophage receptor that interacts with sialic acids on both host cells and pathogens. It is a type 1 membrane protein with an unusually large number of 17 extracellular immunoglobulin (Ig)-like domains, made up of an N-terminal V-set domain that binds sialic acid and 16 adjacent C2-set domains. The potential importance of 17 Ig domains in Sn for mediating cellular interactions has not been investigated experimentally. In the present study, Chinese Hamster Ovary (CHO) cells were stably transfected with full-length or truncated forms of Sn. Using human red blood cells (RBC) as a model system, CHO cells expressing truncated forms of Sn with 4 or less Ig domains were unable to bind RBC in comparison to the full-length protein. Immunoelectron microscopy of the CHO cells indicated that full-length Sn extends ~ 33 nm from the plasma membrane compared with ~ 14 nm for a truncated form with 6 N-terminal Ig domains. Co-expresssion of Sn-expressing CHO cells with heavily glycosylated membrane proteins of differing predicted lengths resulted in selective modulation of Sn-dependent binding to RBC and supported the hypothesis that Sn has evolved 17 Ig domains to escape inhibitory cis-interactions. The functional significance of the extended length of Sn was demonstrated in experiments with macrophages showing that Sn synergizes with phagocytic receptors FcR and TIM-4 to strongly promote uptake of IgG-opsonized and eryptotic RBC respectively.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":"40 2","pages":"213-223"},"PeriodicalIF":3.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027830/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9280432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glycoconjugate JournalPub Date : 2023-02-01Epub Date: 2022-12-16DOI: 10.1007/s10719-022-10095-3
Ingrid A V Wolin, Ana Paula M Nascimento, Rodrigo Seeger, Gabriela G Poluceno, Alfeu Zanotto-Filho, Claudia B Nedel, Carla I Tasca, Sarah Elizabeth Gomes Correia, Messias Vital Oliveira, Vanir Reis Pinto-Junior, Vinicius Jose Silva Osterne, Kyria Santiago Nascimento, Benildo Sousa Cavada, Rodrigo Bainy Leal
{"title":"The lectin DrfL inhibits cell migration, adhesion and triggers autophagy-dependent cell death in glioma cells.","authors":"Ingrid A V Wolin, Ana Paula M Nascimento, Rodrigo Seeger, Gabriela G Poluceno, Alfeu Zanotto-Filho, Claudia B Nedel, Carla I Tasca, Sarah Elizabeth Gomes Correia, Messias Vital Oliveira, Vanir Reis Pinto-Junior, Vinicius Jose Silva Osterne, Kyria Santiago Nascimento, Benildo Sousa Cavada, Rodrigo Bainy Leal","doi":"10.1007/s10719-022-10095-3","DOIUrl":"10.1007/s10719-022-10095-3","url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is the most aggressive type of glioma, displaying atypical glycosylation pattern that may modulate signaling pathways involved in tumorigenesis. Lectins are glycan binding proteins with antitumor properties. The present study was designed to evaluate the antitumor capacity of the Dioclea reflexa lectin (DrfL) on glioma cell cultures. Our results demonstrated that DrfL induced morphological changes and cytotoxic effects in glioma cell cultures of C6, U-87MG and GBM1 cell lines. The action of DrfL was dependent upon interaction with glycans, and required a carbohydrate recognition domain (CRD), and the cytotoxic effect was apparently selective for tumor cells, not altering viability and morphology of primary astrocytes. DrfL inhibited tumor cell migration, adhesion, proliferation and survival, and these effects were accompanied by activation of p38<sup>MAPK</sup> and JNK (p46/54), along with inhibition of Akt and ERK1/2. DrfL also upregulated pro-apoptotic (BNIP3 and PUMA) and autophagic proteins (Atg5 and LC3 cleavage) in GBM cells. Noteworthy, inhibition of autophagy and caspase-8 were both able to attenuate cell death in GBM cells treated with DrfL. Our results indicate that DrfL cytotoxicity against GBM involves modulation of cell pathways, including MAPKs and Akt, which are associated with autophagy and caspase-8 dependent cell death.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":"40 1","pages":"47-67"},"PeriodicalIF":2.7,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10730297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glycoconjugate JournalPub Date : 2023-02-01Epub Date: 2022-11-17DOI: 10.1007/s10719-022-10091-7
Iovanna Torres-Arteaga, Alejandro Blanco-Labra, Elizabeth Mendiola-Olaya, Teresa García-Gasca, Cesar Aguirre-Mancilla, Alondra L Ortega-de-Santiago, Mariana Barboza, Carlito B Lebrilla, José Luis Castro-Guillén
{"title":"Comparative study, homology modelling and molecular docking with cancer associated glycans of two non-fetuin-binding Tepary bean lectins.","authors":"Iovanna Torres-Arteaga, Alejandro Blanco-Labra, Elizabeth Mendiola-Olaya, Teresa García-Gasca, Cesar Aguirre-Mancilla, Alondra L Ortega-de-Santiago, Mariana Barboza, Carlito B Lebrilla, José Luis Castro-Guillén","doi":"10.1007/s10719-022-10091-7","DOIUrl":"10.1007/s10719-022-10091-7","url":null,"abstract":"<p><p>We present the purification and characterization of the two most abundant isoforms of lectins isolated from Tepary bean (Phaseolus acutifolius) seeds, which have been shown to differentially affect the survival of different cancer cells. They were separated by concanavalin A-affinity chromatography. After purification, to release the N-glycans, they were digested with the endoglycosidases PNGase and Glycanase A. Fractions resulted from the hydrolysis products were analyzed to determine their carbohydrate composition. Mass spectrometry data indicated that both isoforms contained high mannose glycans being mannose 6 the most abundant form. Furthermore, based on sequence Ans-X-Ser/Thr, where X is any amino acid except proline, a glycosylation site was determined on asparagine 36. When their metal requirement to preserve their biological activity was determined, the lectins showed differences. While lectin A (LA) agglutination activity was best in the presence of magnesium, lectin B (LB) was best with calcium. Additionally, only LA exhibited affinity to human type-A erythrocytes. Although both lectins showed small differences in their properties, an identical structure-model for both lectins was generated by the homology modelling process. Also, the analysis of ligand binding sites and in silico glycosylation were achieved. Molecular docking with colon adenocarcinoma associated-N-glycans revealed some highly possible interactions and, on the other hand, that N-glycan interaction zones of Tepary bean lectins is not restricted to the carbohydrate binding domain but to an extended part of their surface, which could lead new strategies to explain their biological activity.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":"40 1","pages":"69-84"},"PeriodicalIF":2.7,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10730604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glycoconjugate JournalPub Date : 2023-02-01Epub Date: 2022-10-26DOI: 10.1007/s10719-022-10089-1
Martina Duca, Nadia Malagolini, Fabio Dall'Olio
{"title":"The story of the Sd<sup>a</sup> antigen and of its cognate enzyme B4GALNT2: What is new?","authors":"Martina Duca, Nadia Malagolini, Fabio Dall'Olio","doi":"10.1007/s10719-022-10089-1","DOIUrl":"10.1007/s10719-022-10089-1","url":null,"abstract":"<p><p>The structure Siaα2,3(GalNAcβ1,4)Gal- is the epitope of the Sd<sup>a</sup> antigen, which is expressed on the erythrocytes and secretions of the vast majority of Caucasians, carried by N- and O-linked chains of glycoproteins, as well as by glycolipids. Sd<sup>a</sup> is very similar, but not identical, to ganglioside GM2 [Siaα2,3(GalNAcβ1,4)Galβ1,4Glc-Cer]. The Sd<sup>a</sup> synthase β1,4 N-acetylgalactosaminyl transferase 2 (B4GALNT2) exists in a short and a long form, diverging in the aminoterminal domain. The latter has a very long cytoplasmic tail and displays a Golgi- as well as a post-Golgi localization. The biosynthesis of Sd<sup>a</sup> is mutually exclusive with that of the cancer-associated sialyl Lewis antigens, whose structure is Siaα2,3Galβ1,3/4(Fucα1,4/3)GlcNAc-. B4GALNT2 is down-regulated in colon cancer but patients with higher expression survive longer. In experimental systems, B4GALNT2 inhibits colon cancer progression,not only through inhibition of sialyl Lewis antigen biosynthesis. By contrast, in breast cancer B4GALNT2 is associated with malignancy. In colon cancer, the B4GALNT2 gene is regulated by multiple mechanisms, which include miRNA and transcription factor expression, as well as CpG methylation. In addition, Sd<sup>a</sup>/B4GALNT2 regulates the susceptibility to infectious agents, the protection from muscle dystrophy, the activity of immune system in pregnancy and the immune rejection in xenotransplantation.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":"40 1","pages":"123-133"},"PeriodicalIF":2.7,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10730559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glycoconjugate JournalPub Date : 2023-02-01Epub Date: 2022-11-24DOI: 10.1007/s10719-022-10094-4
Mathias Simplicien, Pierre Pério, Jan Sudor, Annick Barre, Hervé Benoist, Els J M Van Damme, Pierre Rougé
{"title":"Plant lectins as versatile tools to fight coronavirus outbreaks.","authors":"Mathias Simplicien, Pierre Pério, Jan Sudor, Annick Barre, Hervé Benoist, Els J M Van Damme, Pierre Rougé","doi":"10.1007/s10719-022-10094-4","DOIUrl":"10.1007/s10719-022-10094-4","url":null,"abstract":"<p><p>The S protein forming the homotrimeric spikes of pathogenic beta-coronaviruses, such as MERS-CoV, SARS-CoV and SARS-CoV-2, is a highly glycosylated protein containing mainly N-glycans of the complex and high-mannose type, as well as O-glycans. Similarly, the host cell receptors DPP4 for MERS-CoV and ACE2 for SARS-CoV and SARS-CoV-2, also represent N- and O-glycosylated proteins. All these glycoproteins share common glycosylation patterns, suggesting that plant lectins with different carbohydrate-binding specificities could be used as carbohydrate-binding agents for the spikes and their receptors, to combat COVID19 pandemics. The binding of plant lectins to the spikes and their receptors could mask the non-glycosylated receptor binding domain of the virus and the corresponding region of the receptor, thus preventing a proper interaction of the spike proteins with their receptors. In this review, we analyze (1) the ability of plant lectins to interact with the N- and O-glycans present on the spike proteins and their receptors, (2) the in vitro and in vivo anti-COVID19 activity already reported for plant lectins and, (3) the possible ways for delivery of lectins to block the spikes and/or their receptors.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":"40 1","pages":"109-118"},"PeriodicalIF":2.7,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684959/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10731103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glycoconjugate JournalPub Date : 2023-02-01Epub Date: 2022-10-21DOI: 10.1007/s10719-022-10084-6
Gernot Beihammer, Andrea Romero-Pérez, Daniel Maresch, Rudolf Figl, Réka Mócsai, Clemens Grünwald-Gruber, Friedrich Altmann, Els J M Van Damme, Richard Strasser
{"title":"Pseudomonas syringae DC3000 infection increases glucosylated N-glycans in Arabidopsis thaliana.","authors":"Gernot Beihammer, Andrea Romero-Pérez, Daniel Maresch, Rudolf Figl, Réka Mócsai, Clemens Grünwald-Gruber, Friedrich Altmann, Els J M Van Damme, Richard Strasser","doi":"10.1007/s10719-022-10084-6","DOIUrl":"10.1007/s10719-022-10084-6","url":null,"abstract":"<p><p>Studying the interaction between the hemibiotrophic bacterium Pseudomonas syringae pv. tomato DC3000 and Arabidopsis thaliana has shed light onto the various forms of mechanisms plants use to defend themselves against pathogen attack. While a lot of emphasis has been put on investigating changes in protein expression in infected plants, only little information is available on the effect infection plays on the plants N-glycan composition. To close this gap in knowledge, total N-glycans were enriched from P. syringae DC3000-infected and mock treated Arabidopsis seedlings and analyzed via MALDI-TOF-MS. Additionally, fluorescently labelled N-glycans were quantified via HPLC-FLD. N-glycans from infected plants were overall less processed and displayed increased amounts of oligomannosidic N-glycans. As multiple peaks for certain oligomannosidic glycoforms were detected upon separation via liquid chromatography, a porous graphitic carbon (PGC)-analysis was conducted to separate individual N-glycan isomers. Indeed, multiple different N-glycan isomers with masses of two N-acetylhexosamine residues plus 8, 9 or 10 hexoses were detected in the infected plants which were absent in the mock controls. Treatment with jack bean α-mannosidase resulted in incomplete removal of hexoses from these N-glycans, indicating the presence of glucose residues. This hints at the accumulation of misfolded glycoproteins in the infected plants, likely because of endoplasmic reticulum (ER) stress. In addition, poly-hexose structures susceptible to α-amylase treatment were found in the DC3000-infected plants, indicating alterations in starch metabolism due to the infection process.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":"40 1","pages":"97-108"},"PeriodicalIF":2.7,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10734654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}