Glycoconjugate Journal最新文献

筛选
英文 中文
SUMOylated GLUT1 inhibited the glycometabolism disorder in chondroctyes during osteoarthritis. SUMOylated GLUT1抑制骨关节炎期间软骨细胞糖代谢紊乱。
IF 2.7 4区 生物学
Glycoconjugate Journal Pub Date : 2025-02-01 Epub Date: 2025-01-11 DOI: 10.1007/s10719-024-10176-5
Liwei Xiong
{"title":"SUMOylated GLUT1 inhibited the glycometabolism disorder in chondroctyes during osteoarthritis.","authors":"Liwei Xiong","doi":"10.1007/s10719-024-10176-5","DOIUrl":"10.1007/s10719-024-10176-5","url":null,"abstract":"<p><p>Reduction of glucose transporter 1 (GLUT1), even deletion, may results in cartilage fibrosis and osteoarthritis. This study aims to investigate the SUMOylation of GLUT1 in osteoarthritis through small ubiquitin-like modifier 1(SUMO1), and explore the role of SUMOylated GLUT1 in glycometabolism, proliferation and apoptosis in chondrocytes. Human chondrocytes were incubated with 10 ng/mL of IL-1β to mimic osteoarthritis in vitro. GLUT1, SUMO1 and Chondrocyte-related genes including COL2A1, MMP13 and ADAMTS4 were evaluated using western blot. Cell viability and cell apoptosis of chondrocytes were measured by cell counting kit-8 assay and flow cytometry, respectively. The changes in glycometabolism were evaluated using extracellular acidification rate (ECAR) and glucose uptake assay. Co-immunoprecipitation (Co-IP) was used to verify the interaction between GLUT1 and SUMO1. The stabilization role of SUMO1 in GLUT1 was determined by cycloheximide assay. IL-1β induced the decrease of GLUT1, cell viability, ECAR, glucose uptake and COL2A1 and the increase of cell apoptosis, MMP13 and ADAMTS4 in chondrocytes. However, overexpression of SUMO1 led to the reduction of cell apoptosis, MMP13 and ADAMTS4 and the elevation of GLUT1, cell viability, ECAR, glucose uptake and COL2A1 in IL-1β-stimulated chondrocytes. There was SUMOylation sites on GLUT1. Intriguingly, SUMO1 was significantly enriched in GLUT1 using Co-IP assay, and stabilized GLUT1 in chondrocytes. SUMO1-mediated SUMOylation is capable of stabilizing GLUT1 to inhibit glycometabilsm disorder and cell apoptosis in IL-1β-stimulated chondrocytes.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"41-52"},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic studies of chondroitin sulfate/dermatan sulfate isolated from freshwater fish discards on osteogenesis in MC3T3-E1 cells. 淡水鱼废液硫酸软骨素/硫酸皮肤素对MC3T3-E1细胞成骨作用的机制研究。
IF 2.7 4区 生物学
Glycoconjugate Journal Pub Date : 2025-02-01 Epub Date: 2025-01-30 DOI: 10.1007/s10719-025-10178-x
Chandra Gavva, Kunal Sharan, Nandini Chilkunda
{"title":"Mechanistic studies of chondroitin sulfate/dermatan sulfate isolated from freshwater fish discards on osteogenesis in MC3T3-E1 cells.","authors":"Chandra Gavva, Kunal Sharan, Nandini Chilkunda","doi":"10.1007/s10719-025-10178-x","DOIUrl":"10.1007/s10719-025-10178-x","url":null,"abstract":"<p><p>Glycosaminoglycans (GAGs) are essential bone extracellular matrix molecules that regulate osteoblast differentiation. Numerous studies have explored endogenous and exogenous GAG osteoanabolic activities using appropriate in vitro and in vivo models. However, GAGs' underlying the mechanism of action and structure-function relationships need to be elucidated in detail. Earlier, we showed that exogenous GAG can bring about osteogenesis in pre-osteoblast cells. In the present study, we have elucidated the mechanism of action of exogenous GAGs, especially of the chondroitin sulfate/dermatan sulfate (CS/DS) class on osteogenesis. GAGs were immobilized, and osteoblast differentiation was evaluated in MC3T3-E1 cells. Results indicated that GAGs supported osteoblast differentiation by promoting collagen production, extracellular matrix formation, and subsequent mineralization. We elucidated the mechanisms underlying these effects by assessing the key signaling molecules involved in osteogenesis in response to exogenous CS/DS with/without BMP2. CS/DS alone significantly increased pERK1/2 and ATF4 expression levels differentially in a time-dependent manner without significant effects on BMP2, RUNX2, and pSMAD5 protein expression. On the other hand, CS/DS, in the presence of BMP2, differentially increased BMP2, pSMAD5, pERK1/2, RUNX2, and ATF4 expression levels at various time points. Collectively, these results strongly suggest that CS/DS can promote osteogenesis, and in the presence of BMP2, it could promote SMAD-mediated ERK-dependent osteogenesis.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"15-26"},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial single-cell maps reveal ST6GAL1 promoting ovarian cancer metastasis. 空间单细胞图谱显示ST6GAL1促进卵巢癌转移。
IF 2.7 4区 生物学
Glycoconjugate Journal Pub Date : 2025-02-01 Epub Date: 2025-01-30 DOI: 10.1007/s10719-025-10177-y
Lan-Hui Qin, Zijian Jiang, Chongze Yang, Rui Song, Pei-Yin Chen, Weihui Xu, Guanzhen Zeng, Jin-Yuan Liao, Liling Long
{"title":"Spatial single-cell maps reveal ST6GAL1 promoting ovarian cancer metastasis.","authors":"Lan-Hui Qin, Zijian Jiang, Chongze Yang, Rui Song, Pei-Yin Chen, Weihui Xu, Guanzhen Zeng, Jin-Yuan Liao, Liling Long","doi":"10.1007/s10719-025-10177-y","DOIUrl":"10.1007/s10719-025-10177-y","url":null,"abstract":"<p><p>In this study, spatial and single-cell transcriptome techniques were used to investigate the role of beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) in promoting peritoneal metastasis in ovarian cancer epithelial cells. We collected single-cell transcriptomic (GSE130000) and spatial transcriptomic datasets (GSE211956) from the Gene Expression Omnibus and RNA-sequencing data from The Cancer Genome Atlas. The Robust Cell Type Decomposition (RCTD) approach was implemented to integrate spatial and single-cell transcriptomic data. In addition, pseudo-time trajectory analysis, cell-cell communication networks, transcription factor activity profiling, spatial interaction mapping, and prognostic significance of gene expression were assessed. A significant enrichment of ST6GAL1 was observed in the epithelial cells of ovarian cancer, particularly in peritoneal metastases, which exhibited elevated metabolic activity compared to primary tumors. The levels of ST6GAL1 were significantly high in peritumoral and adjacent non-tumorous tissues, with increased metabolic activity, while the tumor core demonstrated ST6GAL1-negative epithelial cells. Extensive cell-cell communication and transcription factor networks were unraveled, potentially influencing vascular permeability and intracellular signaling. Clinically, high expression of ST6GAL1 in epithelial cells is associated with diminished progression-free survival, indicating its prognostic potential. In conclusion, ST6GAL1 is likely to significantly impact the progression and metastasis of ovarian cancer.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"27-40"},"PeriodicalIF":2.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of sulfated glycans on the binding of dengue virus envelope protein to heparin. 硫酸聚糖抑制登革病毒包膜蛋白与肝素结合。
IF 2.7 4区 生物学
Glycoconjugate Journal Pub Date : 2024-12-01 Epub Date: 2024-12-16 DOI: 10.1007/s10719-024-10172-9
Jiyuan Yang, Payel Datta, Ke Xia, Vitor H Pomin, Chunyu Wang, Mingqiang Qiao, Robert J Linhardt, Jonathan S Dordick, Fuming Zhang
{"title":"Inhibition of sulfated glycans on the binding of dengue virus envelope protein to heparin.","authors":"Jiyuan Yang, Payel Datta, Ke Xia, Vitor H Pomin, Chunyu Wang, Mingqiang Qiao, Robert J Linhardt, Jonathan S Dordick, Fuming Zhang","doi":"10.1007/s10719-024-10172-9","DOIUrl":"10.1007/s10719-024-10172-9","url":null,"abstract":"<p><p>Dengue viruses (DENV) are transmitted to humans through mosquito bites and infect millions globally. DENV uses heparan sulfate (HS) for attachment and cell entry by binding the envelope protein to highly sulfated HS on target cells. Therefore, inhibiting the binding between DENV and HS could be a promising strategy for preventing DENV infection. In the current study, the interactions between DENV envelope protein (from Type 2 DENV) and heparin (a surrogate for HS) were analyzed using competition solution SPR. Results demonstrate that heparin binds to DENV envelope protein with high affinity (K<sub>D</sub> = 8.83 nM). Competitive Solution SPR assays using surface-immobilized heparin and a series of naturally-sourced and semi-synthetic sulfated glycans demonstrated significant inhibitory activity against the binding of DENV envelope proteins to heparin. This study of molecular interactions could provide insights into the development of therapeutics for DENV infection.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"371-380"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168185/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142828325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of Domain 9 from the cation-independent mannose-6-phosphate receptor fused with an Fc domain. 从与 Fc 结构域融合的不依赖阳离子的甘露糖-6-磷酸受体中生成结构域 9。
IF 2.7 4区 生物学
Glycoconjugate Journal Pub Date : 2024-12-01 Epub Date: 2024-10-09 DOI: 10.1007/s10719-024-10169-4
Yu-He Tang, Yi-Shi Liu, Morihisa Fujita
{"title":"Production of Domain 9 from the cation-independent mannose-6-phosphate receptor fused with an Fc domain.","authors":"Yu-He Tang, Yi-Shi Liu, Morihisa Fujita","doi":"10.1007/s10719-024-10169-4","DOIUrl":"10.1007/s10719-024-10169-4","url":null,"abstract":"<p><p>Lysosomal storage diseases (LSDs) are genetic disorders caused by mutations in lysosomal enzymes, lysosomal membrane proteins or genes related to intracellular transport that result in impaired lysosomal function. Currently, the primary treatment for several LSDs is enzyme replacement therapy (ERT), which involves intravenous administration of the deficient lysosomal enzymes to ameliorate symptoms. The efficacy of ERT largely depends on the mannose-6-phosphate (M6P) modification of the N-glycans associated with the enzyme, as M6P is a marker for the recognition and trafficking of lysosomal enzymes. In cells, N-glycan processing and M6P modification occur in the endoplasmic reticulum and Golgi apparatus. This is a complex process involving multiple enzymes. In the trans-Golgi network (TGN), M6P-modified enzymes are recognized by the cation-independent mannose-6-phosphate receptor (CIMPR) and transported to the lysosome to exert their activities. In this study, we used the 9th domain of CIMPR, which exhibits a high affinity for M6P binding, and fused it with the Fc domain of human immunoglobulin G<sub>1</sub> (IgG<sub>1</sub>). The resulting fusion protein specifically binds to M6P-modified proteins. This provides a tool for the rapid detection and concentration of M6P-containing recombinant enzymes to assess the effectiveness of ERT. The advantages of this approach include its high specificity and sensitivity and may lead to the development of new treatments for LSDs.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"395-405"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735522/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Processing of N-glycans in the ER and Golgi influences the production of surface sialylated glycoRNA. ER 和高尔基体中 N-聚糖的加工会影响表面糖基化的 glycoRNA 的产生。
IF 2.7 4区 生物学
Glycoconjugate Journal Pub Date : 2024-12-01 Epub Date: 2024-11-12 DOI: 10.1007/s10719-024-10171-w
Yi-Shi Liu, Yu-Long Miao, Yue Dou, Ze-Hui Yang, Wenhao Sun, Xiaoman Zhou, Zijie Li, Nakanishi Hideki, Xiao-Dong Gao, Morihisa Fujita
{"title":"Processing of N-glycans in the ER and Golgi influences the production of surface sialylated glycoRNA.","authors":"Yi-Shi Liu, Yu-Long Miao, Yue Dou, Ze-Hui Yang, Wenhao Sun, Xiaoman Zhou, Zijie Li, Nakanishi Hideki, Xiao-Dong Gao, Morihisa Fujita","doi":"10.1007/s10719-024-10171-w","DOIUrl":"10.1007/s10719-024-10171-w","url":null,"abstract":"<p><p>Glycoconjugates, including glycans on proteins and lipids, have obtained significant attention due to their critical roles in both intracellular and intercellular biological functions and processes. Notably, recent discoveries have revealed the presence of glycosylated RNAs (glycoRNAs) on cell surfaces. Despite the well-characterized roles of RNA modifications, RNA glycosylation remains relatively unexplored. In this study, we investigate the relationship between N-glycosylation and RNA glycosylation. Using a recombinant Siglec11-Fc as a probe, we detected surface sialylated glycoRNAs in human cell lines and identified their dependency on the catalytic isoforms of the oligosaccharyltransferase (OST) complex, implicating STT3A-dependent protein glycosylation as a predominant contributor for affecting indirect generation of glycoRNAs. Additionally, perturbations in N-glycan biosynthesis pathways or changes in N-glycan structure impact surface sialylated glycoRNA levels, indicating a regulatory role of glycan metabolic pathways in RNA glycosylation. Together, our results underscore the intricate relationship between protein N-glycosylation and processing and RNA biology.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"361-370"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MUC1 expression is associated with ST3GAL2 and negatively correlated with the androgen receptor in castration-resistant prostate cancer. 在去势抵抗性前列腺癌中,MUC1表达与ST3GAL2相关,且与雄激素受体负相关。
IF 2.7 4区 生物学
Glycoconjugate Journal Pub Date : 2024-12-01 Epub Date: 2024-12-24 DOI: 10.1007/s10719-024-10173-8
Shotaro Nakanishi, Tetsuji Suda, Kei Tanaka, Tomoko Yonamine, Kenji Numahata, Ai Sugawa, Takuma Oshiro, Yoshinori Oshiro, Seiichi Saito, Junichi Inokuchi
{"title":"MUC1 expression is associated with ST3GAL2 and negatively correlated with the androgen receptor in castration-resistant prostate cancer.","authors":"Shotaro Nakanishi, Tetsuji Suda, Kei Tanaka, Tomoko Yonamine, Kenji Numahata, Ai Sugawa, Takuma Oshiro, Yoshinori Oshiro, Seiichi Saito, Junichi Inokuchi","doi":"10.1007/s10719-024-10173-8","DOIUrl":"10.1007/s10719-024-10173-8","url":null,"abstract":"<p><p>Stage-specific embryonic antigen-4 (SSEA-4) is a developmentally regulated antigen, while expression level of SSEA-4 and / or its synthase ST3GAL2 is associated with prognosis in various malignancies. We have reported a prominent increase of SSEA-4 in castration-resistant prostate cancer (CRPC) and its negative correlation with the androgen receptor (AR). Meanwhile, loss of AR has increased to approximately 30% with the growing use of androgen receptor signaling inhibitor for metastatic CRPC (mCRPC). However, monitoring the progression status of AR-negative prostate cancer is a challenge because it does not produce prostate-specific antigen. Based on the negative relationship of expression between AR and SSEA-4, we hypothesized that a soluble molecule synchronized with SSEA-4 in expression could be a serum marker candidate for AR-negative prostate cancer. Thus, we investigated the molecular background of SSEA-4 expression by ST3GAL2-knockout in DU145 cells. Here we show that MUC1 is identified as a molecule associated with ST3GAL2 and expressed in AR-negative prostate cancer. A negative correlation of expression between AR and MUC1 was observed in prostate cancer cell lines and CRPC tissues. The average rate of MUC1 expression was nearly 60% in AR-negative prostate cancer cells in CRPC tissues. Level of serum CA15-3 (MUC1) was the highest in mCRPC among various stages and its higher level was associated with faster progression of mCRPC. Our results demonstrate that MUC1 is identified as a ST3GAL2-associated molecule and expressed in AR-negative CRPC cells. Furthermore, level of serum CA15-3 may reflect the progression status of mCRPC.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"381-394"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Production of Domain 9 from the cation-independent mannose-6-phosphate receptor fused with an Fc domain. 更正:从与 Fc 结构域融合的不依赖阳离子的甘露糖-6-磷酸受体中生成结构域 9。
IF 2.7 4区 生物学
Glycoconjugate Journal Pub Date : 2024-12-01 DOI: 10.1007/s10719-024-10170-x
Yu-He Tang, Yi-Shi Liu, Morihisa Fujita
{"title":"Correction: Production of Domain 9 from the cation-independent mannose-6-phosphate receptor fused with an Fc domain.","authors":"Yu-He Tang, Yi-Shi Liu, Morihisa Fujita","doi":"10.1007/s10719-024-10170-x","DOIUrl":"10.1007/s10719-024-10170-x","url":null,"abstract":"","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"407"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association between O-GlcNAc levels and platelet function in obese insulin-resistant subjects. 肥胖的胰岛素抵抗受试者体内 O-GlcNAc 水平与血小板功能之间的关系。
IF 2.7 4区 生物学
Glycoconjugate Journal Pub Date : 2024-10-01 Epub Date: 2024-09-20 DOI: 10.1007/s10719-024-10164-9
María Teresa Hernández-Huerta, Ruth Martínez-Cruz, Laura Pérez-Campos Mayoral, María Del Socorro Pina-Canseco, Carlos Josué Solórzano-Mata, Margarito Martínez-Cruz, Itzel Patricia Vásquez Martínez, Edgar Zenteno, Luis Ángel Laguna Barrios, Carlos Alberto Matias-Cervantes, Eduardo Pérez-Campos Mayoral, Eduardo Pérez-Campos
{"title":"Association between O-GlcNAc levels and platelet function in obese insulin-resistant subjects.","authors":"María Teresa Hernández-Huerta, Ruth Martínez-Cruz, Laura Pérez-Campos Mayoral, María Del Socorro Pina-Canseco, Carlos Josué Solórzano-Mata, Margarito Martínez-Cruz, Itzel Patricia Vásquez Martínez, Edgar Zenteno, Luis Ángel Laguna Barrios, Carlos Alberto Matias-Cervantes, Eduardo Pérez-Campos Mayoral, Eduardo Pérez-Campos","doi":"10.1007/s10719-024-10164-9","DOIUrl":"10.1007/s10719-024-10164-9","url":null,"abstract":"<p><p>Obesity is an epidemic associated with platelet and vascular disorders. Platelet O-GlcNAcylation has been poorly studied in obese subjects. We aimed to evaluate O-linked N-acetyl-glucosamine (O-GlcNAc) levels and platelet activity in obese insulin-resistant (ObIR) subjects. Six healthy and six insulin-resistant obese subjects with a body mass index of 22.6 kg/m<sup>2</sup> (SD ± 2.2) and 35.6 kg/m<sup>2</sup> (SD ± 3.8), respectively, were included. Flow cytometry was used to measure markers of platelet activity, expression of P-selectin (CD62P antibody), glycoprotein IIb/IIIa (integrins αIIbβ3 binding to PAC-1 antibody), and thrombin stimulation. O-GlcNAc was determined in the platelets of all test subjects by cytofluometry, intracellular calcium, percentage of platelet aggregation, and immunofluorescence microscopy and Western blot were used to assess O-GlcNAc and OGT (O-GlcNAc transferase) in platelets. Platelets from ObIR subjects had on average 221.4 nM intracellular calcium, 81.89% PAC-1, 22.85% CD62P, 57.48% OGT, and 66.62% O-GlcNAc, while platelets from healthy subjects had on average 719.2 nM intracellular calcium, 4.99% PAC-1, 3.17% CD62P, 18.38% OGT, and 23.41% O-GlcNAc. ObIR subjects showed lower platelet aggregation than healthy subjects, 13.83% and 54%, respectively. The results show that ObIR subjects have increased O-GlcNAc, and increased intraplatelet calcium associated with platelet hyperactivity and compared to healthy subjects, suggesting that changes in platelet protein O-GlcNAcylation and platelet activity might serve as a possible prognostic tool for insulin resistance, prediabetes and its progression to type 2 diabetes mellitus.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"291-300"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142284412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lectin-glycan interactions: a comprehensive cataloguing of cancer-associated glycans for biorecognition and bio-alteration: a review. 连接蛋白-聚糖相互作用:用于生物识别和生物改变的癌症相关聚糖综合编目:综述。
IF 2.7 4区 生物学
Glycoconjugate Journal Pub Date : 2024-10-01 Epub Date: 2024-09-02 DOI: 10.1007/s10719-024-10161-y
Maruti J Gurav, J Manasa, Ashwini S Sanji, Prasanna H Megalamani, Vishwanath B Chachadi
{"title":"Lectin-glycan interactions: a comprehensive cataloguing of cancer-associated glycans for biorecognition and bio-alteration: a review.","authors":"Maruti J Gurav, J Manasa, Ashwini S Sanji, Prasanna H Megalamani, Vishwanath B Chachadi","doi":"10.1007/s10719-024-10161-y","DOIUrl":"10.1007/s10719-024-10161-y","url":null,"abstract":"<p><p>This comprehensive review meticulously compiles data on an array of lectins and their interactions with different cancer types through specific glycans. Crucially, it establishes the link between aberrant glycosylation and cancer types. This repository of lectin-defined glycan signatures, assumes paramount importance in the realm of cancer and its dynamic nature. Cancer, known for its remarkable heterogeneity and individualized behaviour, can be better understood through these glycan signatures. The current review discusses the important lectins and their carbohydrate specificities, especially recognizing glycans of cancer origin. The review also addresses the key aspects of differentially expressed glycans on normal and cancerous cell surfaces. Specific cancer types highlighted in this review include breast cancer, colon cancer, glioblastoma, cervical cancer, lung cancer, liver cancer, and leukaemia. The glycan profiles unveiled through this review hold the key to tailor-made treatment and precise diagnostics. It opens up avenues to explore the potential of targeting glycosyltransferases and glycosidases linked with cancer advancement and metastasis. Armed with knowledge about specific glycan expressions, researchers can design targeted therapies to modulate glycan profiles, potentially hampering the advance of this relentless disease.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"301-322"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142106692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信