{"title":"The CRK14 gene encoding a cysteine-rich receptor-like kinase is implicated in the regulation of global proliferative arrest in Arabidopsis thaliana","authors":"Sho Imai, Hikaru Hirozawa, Shingo Sugahara, Chisato Ishizaki, Mayu Higuchi, Yuma Matsushita, Takamasa Suzuki, Nobuyoshi Mochizuki, Akira Nagatani, Chiharu Ueguchi","doi":"10.1111/gtc.13139","DOIUrl":"10.1111/gtc.13139","url":null,"abstract":"<p>Global proliferative arrest (GPA) is a phenomenon in monocarpic plants in which the activity of all aboveground meristems generally ceases in a nearly coordinated manner after the formation of a certain number of fruits. Despite the fact that GPA is a biologically and agriculturally important event, the underlying molecular mechanisms are not well understood. In this study, we attempted to elucidate the molecular mechanism of GPA regulation by identifying the gene responsible for the Arabidopsis mutant <i>fireworks</i> (<i>fiw</i>), causing an early GPA phenotype. Map-based cloning revealed that the <i>fiw</i> gene encodes CYSTEIN-RICH RECEPTOR-LIKE KINASE 14 (CRK14). Genetic analysis suggested that <i>fiw</i> is a missense, gain-of-function allele of <i>CRK14</i>. Since overexpression of the extracellular domain of CRK14 resulted in delayed GPA in the wild-type background, we concluded that <i>CRK14</i> is involved in GPA regulation. Analysis of double mutants revealed that <i>fiw</i> acts downstream of or independently of the <i>FRUITFULL-APETALA2</i> (<i>AP2</i>)<i>/AP2-like</i> pathway, which was previously reported as an age-dependent default pathway in GPA regulation. In addition, <i>fiw</i> is epistatic to <i>clv</i> with respect to GPA control. Furthermore, we found a negative effect on <i>WUSCHEL</i> expression in the <i>fiw</i> mutants. These results thus suggest the existence of a novel CRK14-dependent signaling pathway involved in GPA regulation.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.13139","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genes to CellsPub Date : 2024-06-27DOI: 10.1111/gtc.13137
Masami Ueta, Akira Wada, Chieko Wada
{"title":"The hibernation promoting factor of Betaproteobacteria Comamonas testosteroni cannot induce 100S ribosome formation but stabilizes 70S ribosomal particles","authors":"Masami Ueta, Akira Wada, Chieko Wada","doi":"10.1111/gtc.13137","DOIUrl":"10.1111/gtc.13137","url":null,"abstract":"<p>Bacteria use several means to survive under stress conditions such as nutrient depletion. One such response is the formation of hibernating 100S ribosomes, which are translationally inactive 70S dimers. In Gammaproteobacteria (Enterobacterales), 100S ribosome formation requires ribosome modulation factor (RMF) and short hibernation promoting factor (HPF), whereas it is mediated by only long HPF in the majority of bacteria. Here, we investigated the role of HPFs of <i>Comamonas testosteroni</i>, which belongs to the Betaproteobacteria with common ancestor to the Gammaproteobacteria. <i>C. testosteroni</i> has two genes of HPF homologs of differing length (<i>Ct</i>HPF-125 and <i>Ct</i>HPF-119). <i>Ct</i>HPF-125 was induced in the stationary phase, whereas <i>Ct</i>HPF-119 conserved in many other Betaproteobacteria was not expressed in the culture conditions used here. Unlike short HPF and RMF, and long HPF, <i>Ct</i>HPF-125 could not form 100S ribosome. We first constructed the deletion mutant of Ct<i>hpf</i>-125 gene. When the deletion mutant grows in the stationary phase, 70S particles were degraded faster than in the wild strain. <i>Ct</i>HPF-125 contributes to stabilizing the 70S ribosome. <i>Ct</i>HPF-125 and <i>Ct</i>HPF-119 both inhibited protein synthesis by transcription-translation in vitro. Our findings suggest that <i>Ct</i>HPF-125 binds to ribosome, and stabilizes 70S ribosomes, inhibits translation without forming 100S ribosomes and supports prolonging life.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genes to CellsPub Date : 2024-06-25DOI: 10.1111/gtc.13138
Stephen Mwaniki, Priyanka Sawant, Osaretin P. Osemwenkhae, Yurika Fujita, Masaru Ito, Asako Furukohri, Akira Shinohara
{"title":"Mutational analysis of Mei5, a subunit of Mei5-Sae3 complex, in Dmc1-mediated recombination during yeast meiosis","authors":"Stephen Mwaniki, Priyanka Sawant, Osaretin P. Osemwenkhae, Yurika Fujita, Masaru Ito, Asako Furukohri, Akira Shinohara","doi":"10.1111/gtc.13138","DOIUrl":"10.1111/gtc.13138","url":null,"abstract":"<p>Interhomolog recombination in meiosis is mediated by the Dmc1 recombinase. The Mei5-Sae3 complex of <i>Saccharomyces cerevisiae</i> promotes Dmc1 assembly and functions with Dmc1 for homology-mediated repair of meiotic DNA double-strand breaks. How Mei5-Sae3 facilitates Dmc1 assembly remains poorly understood. In this study, we created and characterized several <i>mei5</i> mutants featuring the amino acid substitutions of basic residues. We found that Arg97 of Mei5, conserved in its ortholog, SFR1 (complex with SWI5), RAD51 mediator, in humans and other organisms, is critical for complex formation with Sae3 for Dmc1 assembly. Moreover, the substitution of either Arg117 or Lys133 with Ala in Mei5 resulted in the production of a C-terminal truncated Mei5 protein during yeast meiosis. Notably, the shorter Mei5-R117A protein was observed in meiotic cells but not in mitotic cells when expressed, suggesting a unique regulation of Dmc1-mediated recombination by posttranslational processing of Mei5-Sae3.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141456320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Promoter characterization of relZ-bifunctional (pp)pGpp synthetase in mycobacteria","authors":"Neethu RS, Shubham Kumar Sinha, Sakshi Batra, Pavan Reddy Regatti, Kirtimaan Syal","doi":"10.1111/gtc.13135","DOIUrl":"10.1111/gtc.13135","url":null,"abstract":"<p>The second messenger guanosine 3',5'-bis(diphosphate)/guanosine tetraphosphate (ppGpp) and guanosine 3'-diphosphate 5'-triphosphate/guanosine pentaphosphate (pppGpp) ((p)ppGpp) has been shown to be crucial for the survival of mycobacteria under hostile conditions. Unexpectedly, deletion of primary (p)ppGpp synthetase-Rel did not completely diminish (p)ppGpp levels leading to the discovery of novel bifunctional enzyme-RelZ, which displayed guanosine 5'-monophosphate,3'-diphosphate (pGpp), ppGpp, and pppGpp ((pp)pGpp) synthesis and RNAseHII activity. What conditions does it express itself under, and does it work in concert with Rel? The regulation of its transcription and whether the Rel enzyme plays a role in such regulation remain unclear. In this article, we have studied <i>relZ</i> promoter and compared its activity with <i>rel</i> promoter in different growth conditions. We observed that the promoter activity of <i>relZ</i> was constitutive; it is weaker than <i>rel</i> promoter, lies within 200 bp upstream of translation-start site, and it increased under carbon starvation. Furthermore, the promoter activity of <i>relZ</i> was compromised in the <i>rel</i>-knockout strain in the stationary phase. Our study unveils the dynamic regulation of <i>relZ</i> promoter activity by SigA and SigB sigma factors in different growth phases in mycobacteria. Importantly, elucidating the regulatory network of RelZ would enable the development of the targeted interventions for treating mycobacterial infections.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141456321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel transcription factor Sdr1 involving sulfur depletion response in fission yeast","authors":"Hokuto Ohtsuka, Kotaro Ohara, Takafumi Shimasaki, Yoshiko Hatta, Yasukichi Maekawa, Hirofumi Aiba","doi":"10.1111/gtc.13136","DOIUrl":"10.1111/gtc.13136","url":null,"abstract":"<p>In the fission yeast <i>Schizosaccharomyces pombe</i>, the response to sulfur depletion has been less studied compared to the response to nitrogen depletion. Our study reveals that the fission yeast gene, SPCC417.09c, plays a significant role in the sulfur depletion response. This gene encodes a protein with a Zn<sub>2</sub>Cys<sub>6</sub> fungal-type DNA-binding domain and a transcription factor domain, and we have named it <i>sdr1</i><sup>+</sup> (sulfur depletion response 1). Interestingly, while sulfur depletion typically induces autophagy akin to nitrogen depletion, we found that autophagy was not induced under sulfur depletion in the absence of <i>sdr1</i><sup>+</sup>. This suggests that <i>sdr1</i><sup>+</sup> is necessary for the induction of autophagy under conditions of sulfur depletion. Although <i>sdr1</i><sup>+</sup> is not essential for the growth of fission yeast, its overexpression, driven by the <i>nmt1</i> promoter, inhibits growth. This implies that Sdr1 may possess cell growth-inhibitory capabilities. In addition, our analysis of Δ<i>sdr1</i> cells revealed that <i>sdr1</i><sup>+</sup> also plays a role in regulating the expression of genes associated with the phosphate depletion response. In conclusion, our study introduces Sdr1 as a novel transcription factor that contributes to an appropriate cellular nutrient starvation response. It does so by inhibiting inappropriate cell growth and inducing autophagy in response to sulfur depletion.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141520502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antibiotic effects on gut microbiota modulate diet-induced metabolic dysfunction-associated steatohepatitis development in C57BL/6 mice","authors":"Shun Takano, Koudai Kani, Kaichi Kasai, Naoya Igarashi, Miyuna Kato, Kana Goto, Yudai Matsuura, Mayuko Ichimura-Shimizu, Shiro Watanabe, Koichi Tsuneyama, Yukihiro Furusawa, Yoshinori Nagai","doi":"10.1111/gtc.13134","DOIUrl":"10.1111/gtc.13134","url":null,"abstract":"<p>The potential involvement of the gut microbiota in metabolic dysfunction-associated steatohepatitis (MASH) pathogenesis has garnered increasing attention. In this study, we elucidated the link between high-fat/cholesterol/cholate-based (iHFC)#2 diet-induced MASH progression and gut microbiota in C57BL/6 mice using antibiotic treatments. Treatment with vancomycin (VCM), which targets gram-positive bacteria, exacerbated the progression of liver damage, steatosis, and fibrosis in iHFC#2-fed C57BL/6 mice. The expression levels of inflammation- and fibrosis-related genes in the liver significantly increased after VCM treatment for 8 weeks. F4/80<sup>+</sup> macrophage abundance increased in the livers of VCM-treated mice. These changes were rarely observed in the iHFC#2-fed C57BL/6 mice treated with metronidazole, which targets anaerobic bacteria. A16S rRNA sequence analysis revealed a significant decrease in α-diversity in VCM-treated mice compared with that in placebo-treated mice, with Bacteroidetes and Firmicutes significantly decreased, while Proteobacteria and Verrucomicrobia increased markedly. Finally, VCM treatment dramatically altered the level and balance of bile acid (BA) composition in iHFC#2-fed C57BL/6 mice. Thus, the VCM-mediated exacerbation of MASH progression depends on the interaction between the gut microbiota, BA metabolism, and inflammatory responses in the livers of iHFC#2-fed C57BL/6 mice.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genes to CellsPub Date : 2024-06-07DOI: 10.1111/gtc.13131
Kuniya Abe, Hiroshi Masuya, Toshihiko Shiroishi
{"title":"The 36th International Mammalian Genome Conference: A scientific gathering under the cherry blossoms in Tsukuba","authors":"Kuniya Abe, Hiroshi Masuya, Toshihiko Shiroishi","doi":"10.1111/gtc.13131","DOIUrl":"10.1111/gtc.13131","url":null,"abstract":"<p>The 36th International Mammalian Genome Conference (IMGC) was held in a hybrid format at the Tsukuba International Congress Center in Tsukuba, Ibaraki, Japan, for 4 days from March 28 to 31, 2023. This international conference on functional genomics of mouse, human, and other mammalian species attracted 246 participants in total, of which 129 were from outside Japan, including Europe, the United States and Asia, and 117 participants were from Japan. The conference included three technical workshops, keynote lectures by domestic researchers, commemorative lectures for the conference awards, 57 oral presentations, and 97 poster presentations. The event was a great success. Topics included the establishment and analysis of disease models using genetically engineered or spontaneous mutant mice, systems genetic analysis using mouse strains such as wild-derived mice and recombinant inbred mouse strains, infectious diseases, immunology, and epigenetics. In addition, as a joint program, a two-day RIKEN Symposium was held, and active discussions continued over the four-day period. Also, there was a trainee symposium, in which young researchers were encouraged to participate, and excellent papers were selected as oral presentations in the main session.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genes to CellsPub Date : 2024-06-07DOI: 10.1111/gtc.13133
Kohei Kawaguchi, Soichirou Satoh, Junichi Obokata
{"title":"Transcription of damage-induced RNA in Arabidopsis was frequently initiated from DSB loci within the genic regions","authors":"Kohei Kawaguchi, Soichirou Satoh, Junichi Obokata","doi":"10.1111/gtc.13133","DOIUrl":"10.1111/gtc.13133","url":null,"abstract":"<p>DNA double-strand breaks (DSBs) are the most severe DNA lesions and need to be removed immediately to prevent loss of genomic information. Recently, it has been revealed that DSBs induce novel transcription from the cleavage sites in various species, resulting in RNAs being referred to as damage-induced RNAs (diRNAs). While diRNA synthesis is an early event in the DNA damage response and plays an essential role in DSB repair activation, the location where diRNAs are newly generated in plants remains unclear, as does their transcriptional mechanism. Here, we performed the sequencing of polyadenylated (polyA) diRNAs that emerged around all DSB loci in <i>Arabidopsis thaliana</i> under the expression of the exogenous restriction enzyme <i>Sbf</i> I and observed 88 diRNAs transcribed via RNA polymerase II in 360 DSB loci. Most of the detected diRNAs originated within active genes and were transcribed from DSBs in a bidirectional manner. Furthermore, we found that diRNA elongation tends to terminate at the boundary of an endogenous gene located near DSB loci. Our results provide reliable evidence for understanding the importance of new transcription at DSBs and show that diRNA is a crucial factor for successful DSB repair.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The HMG-box module in FACT is critical for suppressing epigenetic variegation of heterochromatin in fission yeast","authors":"Shinya Takahata, Asahi Taguchi, Ayaka Takenaka, Miyuki Mori, Yuji Chikashige, Chihiro Tsutsumi, Yasushi Hiraoka, Yota Murakami","doi":"10.1111/gtc.13132","DOIUrl":"10.1111/gtc.13132","url":null,"abstract":"<p>Chromatin condensation state is the key for retrieving genetic information. High-mobility group protein (HMG) proteins exhibit DNA-binding and bending activities, playing an important role in the regulation of chromatin structure. We have shown that nucleosomes tightly packaged into heterochromatin undergo considerable dynamic histone H2A-H2B maintenance via the direct interaction between HP1/Swi6 and facilitate chromatin transcription (FACT), which is composed of the Spt16/Pob3 heterodimer and Nhp6. In this study, we analyzed the role of Nhp6, an HMG box protein, in the FACT at heterochromatin. Pob3 mutant strains showed derepressed heterochromatin-dependent gene silencing, whereas Nhp6 mutant strains did not show significant defects in chromatin regulation or gene expression, suggesting that these two modules play different roles in chromatin regulation. We expressed a protein fusing Nhp6 to the C-terminus of Pob3, which mimics the multicellular FACT component Ssrp1. The chromatin-binding activity of FACT increased with the number of Nhp6 fused to Pob3, and the heterochromatin formation rate was promoted more strongly. Furthermore, we demonstrated that this promotion of heterochromatinization inhibited the heterochromatic variegation caused by <i>epe1</i><sup>+</sup> disruption. Heterochromatic variegation can be observed in a variety of regulatory steps; however, when it is caused by fluctuations in chromatin arrangement, it can be eliminated through the strong recruitment of the FACT complex.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genes to CellsPub Date : 2024-05-29DOI: 10.1111/gtc.13130
Takamasa Ito, Musashi Kubiura-Ichimaru, Fumihito Miura, Shoji Tajima, M. Azim Surani, Takashi Ito, Shinpei Yamaguchi, Masako Tada
{"title":"DNMT1 can induce primary germ layer differentiation through de novo DNA methylation","authors":"Takamasa Ito, Musashi Kubiura-Ichimaru, Fumihito Miura, Shoji Tajima, M. Azim Surani, Takashi Ito, Shinpei Yamaguchi, Masako Tada","doi":"10.1111/gtc.13130","DOIUrl":"10.1111/gtc.13130","url":null,"abstract":"<p>DNA methyltransferases and Ten-Eleven Translocation (TET) proteins regulate the DNA methylation and demethylation cycles during mouse embryonic development. Although DNMT1 mainly plays a role in the maintenance of DNA methylation after DNA replication, it is also reported to possess de novo methyltransferase capacity. However, its physiological significance remains unclear. Here, we demonstrate that full-length DNMT1 (FL) and a mutant lacking the N-terminus necessary for its maintenance activity (602) confer the differentiation potential of mouse <i>Dnmt1</i>, <i>Dnmt3a</i>, and <i>Dnmt3b</i> (Dnmts-TKO) embryonic stem cells (ESCs). Both FL and 602 inhibit the spontaneous differentiation of Dnmts-TKO ESCs in the undifferentiated state. Dnmts-TKO ESCs showed loss of DNA methylation and de-repression of primitive endoderm-related genes, but these defects were partially restored in Dnmts-TKO + FL and Dnmts-TKO + 602 ESCs. Upon differentiation, Dnmts-TKO + FL ESCs show increased 5mC and 5hmC levels across chromosomes, including pericentromeric regions. In contrast, Dnmts-TKO + 602 ESCs didn't accumulate 5mC, and sister chromatids showed 5hmC asynchronously. Furthermore, in comparison with DNMT1_602, DNMT1_FL effectively promoted commitment to the epiblast-like cells and beyond, driving cell-autonomous mesendodermal and germline differentiation through embryoid body-based methods. With precise target selectivity achieved by its N-terminal region, DNMT1 may play a role in gene regulation leading to germline development.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.13130","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}