Genome MedicinePub Date : 2024-12-04DOI: 10.1186/s13073-024-01406-4
Margo Diricks, Sabine Petersen, Lennart Bartels, Thiên-Trí Lâm, Heike Claus, Maria Paula Bajanca-Lavado, Susanne Hauswaldt, Ricardo Stolze, Omar Jiménez Vázquez, Christian Utpatel, Stefan Niemann, Jan Rupp, Inken Wohlers, Matthias Merker
{"title":"Revisiting mutational resistance to ampicillin and cefotaxime in Haemophilus influenzae.","authors":"Margo Diricks, Sabine Petersen, Lennart Bartels, Thiên-Trí Lâm, Heike Claus, Maria Paula Bajanca-Lavado, Susanne Hauswaldt, Ricardo Stolze, Omar Jiménez Vázquez, Christian Utpatel, Stefan Niemann, Jan Rupp, Inken Wohlers, Matthias Merker","doi":"10.1186/s13073-024-01406-4","DOIUrl":"10.1186/s13073-024-01406-4","url":null,"abstract":"<p><strong>Background: </strong>Haemophilus influenzae is an opportunistic bacterial pathogen that can cause severe respiratory tract and invasive infections. The emergence of β-lactamase-negative ampicillin-resistant (BLNAR) strains and unclear correlations between genotypic (i.e., gBLNAR) and phenotypic resistance are challenging empirical treatments and patient management. Thus, we sought to revisit molecular resistance mechanisms and to identify new resistance determinants of H. influenzae.</p><p><strong>Methods: </strong>We performed a systematic meta-analysis of H. influenzae isolates (n = 291) to quantify the association of phenotypic ampicillin and cefotaxime resistance with previously defined resistance groups, i.e., specific substitution patterns of the penicillin binding protein PBP3, encoded by ftsI. Using phylogenomics and a genome-wide association study (GWAS), we investigated evolutionary trajectories and novel resistance determinants in a public global cohort (n = 555) and a new clinical cohort from three European centers (n = 298), respectively.</p><p><strong>Results: </strong>Our meta-analysis confirmed that PBP3 group II- and group III-related isolates were significantly associated with phenotypic resistance to ampicillin (p < 0.001), while only group III-related isolates were associated with resistance to cefotaxime (p = 0.02). The vast majority of H. influenzae isolates not classified into a PBP3 resistance group were ampicillin and cefotaxime susceptible. However, particularly group II isolates had low specificities (< 16%) to rule in ampicillin resistance due to clinical breakpoints classifying many of them as phenotypically susceptible. We found indications for positive selection of multiple PBP3 substitutions, which evolved independently and often step-wise in different phylogenetic clades. Beyond ftsI, other possible candidate genes (e.g., oppA, ridA, and ompP2) were moderately associated with ampicillin resistance in the GWAS. The PBP3 substitutions M377I, A502V, N526K, V547I, and N569S were most strongly related to ampicillin resistance and occurred in combination in the most prevalent resistant haplotype H1 in our clinical cohort.</p><p><strong>Conclusions: </strong>Gradient agar diffusion strips and broth microdilution assays do not consistently classify isolates from PBP3 groups as phenotypically resistant. Consequently, when the minimum inhibitory concentration is close to the clinical breakpoints, and genotypic data is available, PBP3 resistance groups should be prioritized over susceptible phenotypic results for ampicillin. The implications on treatment outcome and bacterial fitness of other extended PBP3 substitution patterns and novel candidate genes need to be determined.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"140"},"PeriodicalIF":10.4,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616347/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142780076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome MedicinePub Date : 2024-12-03DOI: 10.1186/s13073-024-01402-8
Leonardo D Garma, Miguel Quintela-Fandino
{"title":"Correction: Applicability of epigenetic age models to next-generation methylation arrays.","authors":"Leonardo D Garma, Miguel Quintela-Fandino","doi":"10.1186/s13073-024-01402-8","DOIUrl":"10.1186/s13073-024-01402-8","url":null,"abstract":"","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"142"},"PeriodicalIF":10.4,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142768327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome MedicinePub Date : 2024-12-03DOI: 10.1186/s13073-024-01392-7
Moez Dawood, Shawn Fayer, Sriram Pendyala, Mason Post, Divya Kalra, Karynne Patterson, Eric Venner, Lara A Muffley, Douglas M Fowler, Alan F Rubin, Jennifer E Posey, Sharon E Plon, James R Lupski, Richard A Gibbs, Lea M Starita, Carla Daniela Robles-Espinoza, Willow Coyote-Maestas, Irene Gallego Romero
{"title":"Using multiplexed functional data to reduce variant classification inequities in underrepresented populations.","authors":"Moez Dawood, Shawn Fayer, Sriram Pendyala, Mason Post, Divya Kalra, Karynne Patterson, Eric Venner, Lara A Muffley, Douglas M Fowler, Alan F Rubin, Jennifer E Posey, Sharon E Plon, James R Lupski, Richard A Gibbs, Lea M Starita, Carla Daniela Robles-Espinoza, Willow Coyote-Maestas, Irene Gallego Romero","doi":"10.1186/s13073-024-01392-7","DOIUrl":"10.1186/s13073-024-01392-7","url":null,"abstract":"<p><strong>Background: </strong>Multiplexed Assays of Variant Effects (MAVEs) can test all possible single variants in a gene of interest. The resulting saturation-style functional data may help resolve variant classification disparities between populations, especially for Variants of Uncertain Significance (VUS).</p><p><strong>Methods: </strong>We analyzed clinical significance classifications in 213,663 individuals of European-like genetic ancestry versus 206,975 individuals of non-European-like genetic ancestry from All of Us and the Genome Aggregation Database. Then, we incorporated clinically calibrated MAVE data into the Clinical Genome Resource's Variant Curation Expert Panel rules to automate VUS reclassification for BRCA1, TP53, and PTEN.</p><p><strong>Results: </strong>Using two orthogonal statistical approaches, we show a higher prevalence (p ≤ 5.95e - 06) of VUS in individuals of non-European-like genetic ancestry across all medical specialties assessed in all three databases. Further, in the non-European-like genetic ancestry group, higher rates of Benign or Likely Benign and variants with no clinical designation (p ≤ 2.5e - 05) were found across many medical specialties, whereas Pathogenic or Likely Pathogenic assignments were increased in individuals of European-like genetic ancestry (p ≤ 2.5e - 05). Using MAVE data, we reclassified VUS in individuals of non-European-like genetic ancestry at a significantly higher rate in comparison to reclassified VUS from European-like genetic ancestry (p = 9.1e - 03) effectively compensating for the VUS disparity. Further, essential code analysis showed equitable impact of MAVE evidence codes but inequitable impact of allele frequency (p = 7.47e - 06) and computational predictor (p = 6.92e - 05) evidence codes for individuals of non-European-like genetic ancestry.</p><p><strong>Conclusions: </strong>Generation of saturation-style MAVE data should be a priority to reduce VUS disparities and produce equitable training data for future computational predictors.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"143"},"PeriodicalIF":10.4,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616159/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142768328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive pathogen identification and antimicrobial resistance prediction from positive blood cultures using nanopore sequencing technology.","authors":"Po-Yu Liu, Han-Chieh Wu, Ying-Lan Li, Hung-Wei Cheng, Ci-Hong Liou, Feng-Jui Chen, Yu-Chieh Liao","doi":"10.1186/s13073-024-01416-2","DOIUrl":"https://doi.org/10.1186/s13073-024-01416-2","url":null,"abstract":"<p><strong>Background: </strong>Blood cultures are essential for diagnosing bloodstream infections, but current phenotypic tests for antimicrobial resistance (AMR) provide limited information. Oxford Nanopore Technologies introduces nanopore sequencing with adaptive sampling, capable of real-time host genome depletion, yet its application directly from blood cultures remains unexplored. This study aimed to identify pathogens and predict AMR using nanopore sequencing.</p><p><strong>Methods: </strong>In this cross-sectional genomic study, 458 positive blood cultures from bloodstream infection patients in central Taiwan were analyzed. Parallel experiments involved routine microbiologic tests and nanopore sequencing with a 15-h run. A bioinformatic pipeline was proposed to analyze the real-time sequencing reads. Subsequently, a comparative analysis was performed to evaluate the performance of species identification and AMR prediction.</p><p><strong>Results: </strong>The pipeline identified 76 species, with 88 Escherichia coli, 74 Klebsiella pneumoniae, 43 Staphylococcus aureus, and 9 Candida samples. Novel species were also discovered. Notably, precise species identification was achieved not only for monomicrobial infections but also for polymicrobial infections, which was detected in 23 samples and further confirmed by full-length 16S rRNA amplicon sequencing. Using a modified ResFinder database, AMR predictions showed a categorical agreement rate exceeding 90% (3799/4195) for monomicrobial infections, with minimal very major errors observed for K. pneumoniae (2/186, 1.1%) and S. aureus (1/90, 1.1%).</p><p><strong>Conclusions: </strong>Nanopore sequencing with adaptive sampling can directly analyze positive blood cultures, facilitating pathogen detection, AMR prediction, and outbreak investigation. Integrating nanopore sequencing into clinical practices signifies a revolutionary advancement in managing bloodstream infections, offering an effective antimicrobial stewardship strategy, and improving patient outcomes.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"141"},"PeriodicalIF":10.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142768325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrated analyses of multi-omic data derived from paired primary lung cancer and brain metastasis reveal the metabolic vulnerability as a novel therapeutic target.","authors":"Hao Duan, Jianlan Ren, Shiyou Wei, Zhenyu Yang, Chuan Li, Zhenning Wang, Meichen Li, Zhi Wei, Yu Liu, Xiuqi Wang, Hongbin Lan, Zhen Zeng, Maodi Xie, Yuan Xie, Suwen Wu, Wanming Hu, Chengcheng Guo, Xiangheng Zhang, Lun Liang, Chengwei Yu, Yanhao Mou, Yu Jiang, Houde Li, Eric Sugarman, Rebecca A Deek, Zexin Chen, Tao Li, Yaohui Chen, Maojin Yao, Likun Chen, Lunxu Liu, Gao Zhang, Yonggao Mou","doi":"10.1186/s13073-024-01410-8","DOIUrl":"10.1186/s13073-024-01410-8","url":null,"abstract":"<p><strong>Background: </strong>Lung cancer brain metastases (LC-BrMs) are frequently associated with dismal mortality rates in patients with lung cancer; however, standard of care therapies for LC-BrMs are still limited in their efficacy. A deep understanding of molecular mechanisms and tumor microenvironment of LC-BrMs will provide us with new insights into developing novel therapeutics for treating patients with LC-BrMs.</p><p><strong>Methods: </strong>Here, we performed integrated analyses of genomic, transcriptomic, proteomic, metabolomic, and single-cell RNA sequencing data which were derived from a total number of 154 patients with paired and unpaired primary lung cancer and LC-BrM, spanning four published and two newly generated patient cohorts on both bulk and single cell levels.</p><p><strong>Results: </strong>We uncovered that LC-BrMs exhibited a significantly greater intra-tumor heterogeneity. We also observed that mutations in a subset of genes were almost always shared by both primary lung cancers and LC-BrM lesions, including TTN, TP53, MUC16, LRP1B, RYR2, and EGFR. In addition, the genome-wide landscape of somatic copy number alterations was similar between primary lung cancers and LC-BrM lesions. Nevertheless, several regions of focal amplification were significantly enriched in LC-BrMs, including 5p15.33 and 20q13.33. Intriguingly, integrated analyses of transcriptomic, proteomic, and metabolomic data revealed mitochondrial-specific metabolism was activated but tumor immune microenvironment was suppressed in LC-BrMs. Subsequently, we validated our results by conducting real-time quantitative reverse transcription PCR experiments, immunohistochemistry, and multiplexed immunofluorescence staining of patients' paired tumor specimens. Therapeutically, targeting oxidative phosphorylation with gamitrinib in patient-derived organoids of LC-BrMs induced apoptosis and inhibited cell proliferation. The combination of gamitrinib plus anti-PD-1 immunotherapy significantly improved survival of mice bearing LC-BrMs. Patients with a higher expression of mitochondrial metabolism genes but a lower expression of immune genes in their LC-BrM lesions tended to have a worse survival outcome.</p><p><strong>Conclusions: </strong>In conclusion, our findings not only provide comprehensive and integrated perspectives of molecular underpinnings of LC-BrMs but also contribute to the development of a potential, rationale-based combinatorial therapeutic strategy with the goal of translating it into clinical trials for patients with LC-BrMs.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"138"},"PeriodicalIF":10.4,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590298/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142726892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome MedicinePub Date : 2024-11-26DOI: 10.1186/s13073-024-01414-4
Simon Lam, John C Thomas, Stephen P Jackson
{"title":"Genome-aware annotation of CRISPR guides validates targets in variant cell lines and enhances discovery in screens.","authors":"Simon Lam, John C Thomas, Stephen P Jackson","doi":"10.1186/s13073-024-01414-4","DOIUrl":"10.1186/s13073-024-01414-4","url":null,"abstract":"<p><strong>Background: </strong>CRISPR-Cas9 technology has revolutionised genetic screens and can inform on gene essentiality and chemo-genetic interactions. It is easily deployed and widely supported with many pooled CRISPR libraries available commercially. However, discrepancies between the reference genomes used in the design of those CRISPR libraries and the cell line under investigation can lead to loss of signal or introduction of bias. The problem is particularly acute when dealing with variant cell lines such as cancer cell lines.</p><p><strong>Results: </strong>Here, we present an algorithm, EXOme-guided Re-annotation of nuCleotIde SEquences (Exorcise), which uses sequence search to detect and correct mis-annotations in CRISPR libraries. Exorcise verifies the presence of CRISPR targets in the target genome and applies corrections to CRISPR libraries using existing exome annotations. We applied Exorcise to re-annotate guides in pooled CRISPR libraries available on Addgene and found that libraries designed on a more permissive reference sequence had more mis-annotations. In simulated CRISPR screens, we modelled common mis-annotations and found that they adversely affect discovery of hits in the intermediate range. We then confirmed this by applying Exorcise on datasets from Dependency Map (DepMap) and the DNA Damage Response CRISPR Screen Viewer (DDRcs), where we found improved discovery power upon Exorcise while retaining the strongest hits.</p><p><strong>Conclusions: </strong>Pooled CRISPR libraries map guide sequences to genes and these mappings might not be ready to use due to permissive library design or investigating a variant cell line. By re-annotating CRISPR guides, Exorcise focuses CRISPR experiments towards the genome of the cell line under investigation. Exorcise can be applied at the library design stage or the analysis stage and allows post hoc re-analysis of completed screens. It is available under a Creative Commons Zero v1.0 Universal licence at https://github.com/SimonLammmm/exorcise .</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"139"},"PeriodicalIF":10.4,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590575/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142726863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome MedicinePub Date : 2024-11-25DOI: 10.1186/s13073-024-01412-6
Fabian Landman, Casper Jamin, Angela de Haan, Sandra Witteveen, Jeroen Bos, Han G J van der Heide, Leo M Schouls, Antoni P A Hendrickx
{"title":"Genomic surveillance of multidrug-resistant organisms based on long-read sequencing.","authors":"Fabian Landman, Casper Jamin, Angela de Haan, Sandra Witteveen, Jeroen Bos, Han G J van der Heide, Leo M Schouls, Antoni P A Hendrickx","doi":"10.1186/s13073-024-01412-6","DOIUrl":"10.1186/s13073-024-01412-6","url":null,"abstract":"<p><strong>Background: </strong>Multidrug-resistant organisms (MDRO) pose a significant threat to public health worldwide. The ability to identify antimicrobial resistance determinants, to assess changes in molecular types, and to detect transmission are essential for surveillance and infection prevention of MDRO. Molecular characterization based on long-read sequencing has emerged as a promising alternative to short-read sequencing. The aim of this study was to characterize MDRO for surveillance and transmission studies based on long-read sequencing only.</p><p><strong>Methods: </strong>Genomic DNA of 356 MDRO was automatically extracted using the Maxwell-RSC48. The MDRO included 106 Klebsiella pneumoniae isolates, 85 Escherichia coli, 15 Enterobacter cloacae complex, 10 Citrobacter freundii, 34 Pseudomonas aeruginosa, 16 Acinetobacter baumannii, and 69 methicillin-resistant Staphylococcus aureus (MRSA), of which 24 were from an outbreak. MDRO were sequenced using both short-read (Illumina NextSeq 550) and long-read (Nanopore Rapid Barcoding Kit-24-V14, R10.4.1) whole-genome sequencing (WGS). Basecalling was performed for two distinct models using Dorado-0.3.2 duplex mode. Long-read data was assembled using Flye, Canu, Miniasm, Unicycler, Necat, Raven, and Redbean assemblers. Long-read WGS data with > 40 × coverage was used for multi-locus sequence typing (MLST), whole-genome MLST (wgMLST), whole-genome single-nucleotide polymorphisms (wgSNP), in silico multiple locus variable-number of tandem repeat analysis (iMLVA) for MRSA, and identification of resistance genes (ABRicate).</p><p><strong>Results: </strong>Comparison of wgMLST profiles based on long-read and short-read WGS data revealed > 95% of wgMLST profiles within the species-specific cluster cut-off, except for P. aeruginosa. The wgMLST profiles obtained by long-read and short-read WGS differed only one to nine wgMLST alleles or SNPs for K. pneumoniae, E. coli, E. cloacae complex, C. freundii, A. baumannii complex, and MRSA. For P. aeruginosa, differences were up to 27 wgMLST alleles between long-read and short-read wgMLST and 0-10 SNPs. MLST sequence types and iMLVA types were concordant between long-read and short-read WGS data and conventional MLVA typing. Antimicrobial resistance genes were detected in long-read sequencing data with high sensitivity/specificity (92-100%/99-100%). Long-read sequencing enabled analysis of an MRSA outbreak.</p><p><strong>Conclusions: </strong>We demonstrate that molecular characterization of automatically extracted DNA followed by long-read sequencing is as accurate compared to short-read sequencing and suitable for typing and outbreak analysis as part of genomic surveillance of MDRO. However, the analysis of P. aeruginosa requires further improvement which may be obtained by other basecalling algorithms. The low implementation costs and rapid library preparation for long-read sequencing of MDRO extends its applicability to resource-constrained settings ","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"137"},"PeriodicalIF":10.4,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587635/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome MedicinePub Date : 2024-11-22DOI: 10.1186/s13073-024-01401-9
Yuka Takemon, Erin D Pleasance, Alessia Gagliardi, Christopher S Hughes, Veronika Csizmok, Kathleen Wee, Diane L Trinh, Ryan D Huff, Andrew J Mungall, Richard A Moore, Eric Chuah, Karen L Mungall, Eleanor Lewis, Jessica Nelson, Howard J Lim, Daniel J Renouf, Steven Jm Jones, Janessa Laskin, Marco A Marra
{"title":"Mapping in silico genetic networks of the KMT2D tumour suppressor gene to uncover novel functional associations and cancer cell vulnerabilities.","authors":"Yuka Takemon, Erin D Pleasance, Alessia Gagliardi, Christopher S Hughes, Veronika Csizmok, Kathleen Wee, Diane L Trinh, Ryan D Huff, Andrew J Mungall, Richard A Moore, Eric Chuah, Karen L Mungall, Eleanor Lewis, Jessica Nelson, Howard J Lim, Daniel J Renouf, Steven Jm Jones, Janessa Laskin, Marco A Marra","doi":"10.1186/s13073-024-01401-9","DOIUrl":"10.1186/s13073-024-01401-9","url":null,"abstract":"<p><strong>Background: </strong>Loss-of-function (LOF) alterations in tumour suppressor genes cannot be directly targeted. Approaches characterising gene function and vulnerabilities conferred by such mutations are required.</p><p><strong>Methods: </strong>Here, we computationally map genetic networks of KMT2D, a tumour suppressor gene frequently mutated in several cancer types. Using KMT2D loss-of-function (KMT2D<sup>LOF</sup>) mutations as a model, we illustrate the utility of in silico genetic networks in uncovering novel functional associations and vulnerabilities in cancer cells with LOF alterations affecting tumour suppressor genes.</p><p><strong>Results: </strong>We revealed genetic interactors with functions in histone modification, metabolism, and immune response and synthetic lethal (SL) candidates, including some encoding existing therapeutic targets. Notably, we predicted WRN as a novel SL interactor and, using recently available WRN inhibitor (HRO761 and VVD-133214) treatment response data, we observed that KMT2D mutational status significantly distinguishes treatment-sensitive MSI cell lines from treatment-insensitive MSI cell lines.</p><p><strong>Conclusions: </strong>Our study thus illustrates how tumour suppressor gene LOF alterations can be exploited to reveal potentially targetable cancer cell vulnerabilities.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"136"},"PeriodicalIF":10.4,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome MedicinePub Date : 2024-11-22DOI: 10.1186/s13073-024-01408-2
Antoni Suárez-Pérez, Adrià Macias-Gómez, Isabel Fernández-Pérez, Marta Vallverdú-Prats, Elisa Cuadrado-Godia, Eva Giralt-Steinhauer, Maia Campanale, Daniel Guisado-Alonso, Ana Rodríguez-Campello, Joan Jiménez-Balado, Jordi Jiménez-Conde, Angel Ois
{"title":"Epigenetic age and long-term cancer risk following a stroke.","authors":"Antoni Suárez-Pérez, Adrià Macias-Gómez, Isabel Fernández-Pérez, Marta Vallverdú-Prats, Elisa Cuadrado-Godia, Eva Giralt-Steinhauer, Maia Campanale, Daniel Guisado-Alonso, Ana Rodríguez-Campello, Joan Jiménez-Balado, Jordi Jiménez-Conde, Angel Ois","doi":"10.1186/s13073-024-01408-2","DOIUrl":"10.1186/s13073-024-01408-2","url":null,"abstract":"<p><strong>Background: </strong>The association between increased cancer risk following a cerebrovascular event (CVE) has been previously reported. We hypothesize that biological age (B-age) acceleration is involved in this association. Our study aims to examine B-age as a novel contributing factor to cancer development post-CVE.</p><p><strong>Methods: </strong>From our prospective stroke registry (BasicMar), we selected 940 cases with epigenetic data. For this study, we specifically analyzed 648 of these patients who had available data, no prior history of cancer, and a minimum follow-up of 3 months. The primary outcome was cancer incidence. B-age was estimated using DNA methylation data derived from whole blood samples obtained within 24 h of stroke onset, employing various epigenetic clocks (including Hannum, Horvath, PhenoAge, Zhang<sub>BLUP</sub>, Zhang<sub>EN</sub>, and the mitotic epiTOC). Extrinsic epigenetic age acceleration (EEAA) was calculated as the residuals from the regression of B-age against chronological age (C-age). For epiTOC, the age-adjusted values were obtained by regressing out the effect of age from the raw epiTOC measurements. Estimated white cell counts were derived from DNA methylation data, and these cell fractions were used to compute the intrinsic epigenetic age acceleration (IEAA). Subsequently, we evaluated the independent association between EEAA, IEAA, and cancer incidence while controlling for potential confounding variables.</p><p><strong>Results: </strong>Among 648 patients with a median follow-up of 8.15 years, 83 (12.8%) developed cancer. Cox multivariable analyses indicated significant associations between Hannum, Zhang, and epiTOC EEAA and the risk of cancer after CVE. After adjusting for multiple testing and competing risks, EEAA measured by Hannum clock maintained an independent association with cancer risk. Specifically, for each year increase in Hannum's EEAA, we observed a 6.0% increased incidence of cancer (HR 1.06 [1.02-1.10], p value = 0.002).</p><p><strong>Conclusions: </strong>Our findings suggest that epigenetic accelerated aging, as indicated by Hannum's EEAA, may play a significant role in the increased cancer risk observed in CVE survivors.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"135"},"PeriodicalIF":10.4,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genome MedicinePub Date : 2024-11-18DOI: 10.1186/s13073-024-01407-3
Kun Fang, Aigbe G Ohihoin, Tianxiang Liu, Lavanya Choppavarapu, Bakhtiyor Nosirov, Qianben Wang, Xue-Zhong Yu, Sailaja Kamaraju, Gustavo Leone, Victor X Jin
{"title":"Integrated single-cell analysis reveals distinct epigenetic-regulated cancer cell states and a heterogeneity-guided core signature in tamoxifen-resistant breast cancer.","authors":"Kun Fang, Aigbe G Ohihoin, Tianxiang Liu, Lavanya Choppavarapu, Bakhtiyor Nosirov, Qianben Wang, Xue-Zhong Yu, Sailaja Kamaraju, Gustavo Leone, Victor X Jin","doi":"10.1186/s13073-024-01407-3","DOIUrl":"10.1186/s13073-024-01407-3","url":null,"abstract":"<p><strong>Background: </strong>Inter- and intra-tumor heterogeneity is considered a significant factor contributing to the development of endocrine resistance in breast cancer. Recent advances in single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq) allow us to explore inter- and intra-tumor heterogeneity at single-cell resolution. However, such integrated single-cell analysis has not yet been demonstrated to characterize the transcriptome and chromatin accessibility in breast cancer endocrine resistance.</p><p><strong>Methods: </strong>In this study, we conducted an integrated analysis combining scRNA-seq and scATAC-seq on more than 80,000 breast tissue cells from two normal tissues (NTs), three primary tumors (PTs), and three tamoxifen-treated recurrent tumors (RTs). A variety of cell types among breast tumor tissues were identified, PT- and RT-specific cancer cell states (CSs) were defined, and a heterogeneity-guided core signature (HCS) was derived through such integrated analysis. Functional experiments were performed to validate the oncogenic role of BMP7, a key gene within the core signature.</p><p><strong>Results: </strong>We observed a striking level of cell-to-cell heterogeneity among six tumor tissues and delineated the primary to recurrent tumor progression, underscoring the significance of these single-cell level tumor cell clusters classified from scRNA-seq data. We defined nine CSs, including five PT-specific, three RT-specific, and one PT-RT-shared CSs, and identified distinct open chromatin regions of CSs, as well as a HCS of 137 genes. In addition, we predicted specific transcription factors (TFs) associated with the core signature and novel biological/metabolism pathways that mediate the communications between CSs and the tumor microenvironment (TME). We finally demonstrated that BMP7 plays an oncogenic role in tamoxifen-resistant breast cancer cells through modulating MAPK signaling pathways.</p><p><strong>Conclusions: </strong>Our integrated single-cell analysis provides a comprehensive understanding of the tumor heterogeneity in tamoxifen resistance. We envision this integrated single-cell epigenomic and transcriptomic measure will become a powerful approach to unravel how epigenetic factors and the tumor microenvironment govern the development of tumor heterogeneity and to uncover potential therapeutic targets that circumvent heterogeneity-related failures.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"16 1","pages":"134"},"PeriodicalIF":10.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572372/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}