Sungwoo Bae, Hyekyoung Lee, Kwon Joong Na, Dong Soo Lee, Hongyoon Choi, Young Tae Kim
{"title":"STopover利用空间转录组学数据中的拓扑分析捕获肿瘤微环境中的空间共定位和相互作用。","authors":"Sungwoo Bae, Hyekyoung Lee, Kwon Joong Na, Dong Soo Lee, Hongyoon Choi, Young Tae Kim","doi":"10.1186/s13073-025-01457-1","DOIUrl":null,"url":null,"abstract":"<p><p>Unraveling the spatial configuration of the tumor microenvironment (TME) is crucial for elucidating tumor-immune interactions based on immuno-oncology. We present STopover, a novel approach utilizing spatially resolved transcriptomics (SRT) data and topological analysis to investigate the TME. By gradually lowering the feature threshold, connected components (CCs) are extracted based on spatial distance and persistence, with Jaccard indices quantifying their spatial overlap, and transcriptomic profiles are permutated to assess statistical significance. Applied to lung and breast cancer SRT, STopover revealed immune and stromal cell infiltration patterns, predicted key cell-cell communication, and identified relevant regions, shedding light on cancer pathophysiology (URL: https://github.com/bsungwoo/STopover ).</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"17 1","pages":"33"},"PeriodicalIF":10.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963362/pdf/","citationCount":"0","resultStr":"{\"title\":\"STopover captures spatial colocalization and interaction in the tumor microenvironment using topological analysis in spatial transcriptomics data.\",\"authors\":\"Sungwoo Bae, Hyekyoung Lee, Kwon Joong Na, Dong Soo Lee, Hongyoon Choi, Young Tae Kim\",\"doi\":\"10.1186/s13073-025-01457-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unraveling the spatial configuration of the tumor microenvironment (TME) is crucial for elucidating tumor-immune interactions based on immuno-oncology. We present STopover, a novel approach utilizing spatially resolved transcriptomics (SRT) data and topological analysis to investigate the TME. By gradually lowering the feature threshold, connected components (CCs) are extracted based on spatial distance and persistence, with Jaccard indices quantifying their spatial overlap, and transcriptomic profiles are permutated to assess statistical significance. Applied to lung and breast cancer SRT, STopover revealed immune and stromal cell infiltration patterns, predicted key cell-cell communication, and identified relevant regions, shedding light on cancer pathophysiology (URL: https://github.com/bsungwoo/STopover ).</p>\",\"PeriodicalId\":12645,\"journal\":{\"name\":\"Genome Medicine\",\"volume\":\"17 1\",\"pages\":\"33\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963362/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13073-025-01457-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-025-01457-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
STopover captures spatial colocalization and interaction in the tumor microenvironment using topological analysis in spatial transcriptomics data.
Unraveling the spatial configuration of the tumor microenvironment (TME) is crucial for elucidating tumor-immune interactions based on immuno-oncology. We present STopover, a novel approach utilizing spatially resolved transcriptomics (SRT) data and topological analysis to investigate the TME. By gradually lowering the feature threshold, connected components (CCs) are extracted based on spatial distance and persistence, with Jaccard indices quantifying their spatial overlap, and transcriptomic profiles are permutated to assess statistical significance. Applied to lung and breast cancer SRT, STopover revealed immune and stromal cell infiltration patterns, predicted key cell-cell communication, and identified relevant regions, shedding light on cancer pathophysiology (URL: https://github.com/bsungwoo/STopover ).
期刊介绍:
Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.