GeodermaPub Date : 2024-10-18DOI: 10.1016/j.geoderma.2024.117071
{"title":"Towards the mechanical stability of biocrusts in drylands: Insights from inorganic ions and organic compounds and their interactions","authors":"","doi":"10.1016/j.geoderma.2024.117071","DOIUrl":"10.1016/j.geoderma.2024.117071","url":null,"abstract":"<div><div>Biocrusts are an important component of dryland ecosystems as they perform crucial ecological functions like stabilizing soils, mediating the hydrological cycle, and improving nutrient availability. The high mechanical stability of biocrusts is understood to be linked to exopolymeric substances (EPS), which in turn, are responsible for the adsorption of various ions and chemical compounds. This study aimed to investigate the chemical composition of biocrusts and assess potential correlations between their chemical composition and mechanical stability. Samples of three types of biocrusts (cyanobacteria, cyanobacteria and moss mixed, and moss crusts) and bare soil (as control) were collected from the northern Loess Plateau of China. The inorganic ions and organic compounds present in biocrusts were quantified using inductively coupled plasma-optic emission spectrometry, ion chromatography, and gas chromatography-mass spectrometry. Biocrust mechanical stability was assessed by penetration resistance (PR) and the mean weight diameter (MWD) of aggregates. Finally, the contribution of inorganic ions and organic compounds to the stability of the biocrusts was elucidated. The results indicated that all three types of biocrusts were more stable than bare soil, with moss crusts being the most stable. Chemical analyses revealed an enrichment of inorganic ions such as K<sup>+</sup>, Ca<sup>2+</sup>, Na<sup>+</sup>, Mg<sup>2+</sup>, SO<sub>4</sub><sup>2–</sup>, and halogen ions within the biocrusts, while they showed a depletion of Fe<sup>2+</sup>, Al<sup>3+</sup>, and NO<sub>3</sub><sup>–</sup>. Ten types of organic compounds were identified in biocrusts and bare soil, with medium-chain alkanes and long-chain acids being the dominant compounds. In some cases, acids accounted for more than 40 % of the total organic compound content of the biocrusts. Redundancy analysis showed that the content of inorganic ions, such as Ca<sup>2+</sup> and Mg<sup>2+</sup>, and organic compounds such as acids, amides, and alkenes, exhibited the closest association with the biocrust stability. Partial least squares path modeling indicated that both inorganic ions and organic compounds indirectly affected biocrust stability by influencing electric conductivity, bulk density, EPS, and fine particle (clay and silt) content. A strong association was found between the inorganic ions and both PR and MWD (0.658 and 0.744, respectively), whilst the total effects of organic compounds on PR and MWD were 0.814 and 0.801, respectively. It is suggested that both the magnitude and types of chemicals associated with EPS indicate their capability to grant mechanical stability of the biocrusts, which in turn is conducive to maintaining the critical functions of biocrusts in global drylands.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeodermaPub Date : 2024-10-18DOI: 10.1016/j.geoderma.2024.117070
{"title":"Livestock grazing strengthens the effect of vole activity on the soil microbial community","authors":"","doi":"10.1016/j.geoderma.2024.117070","DOIUrl":"10.1016/j.geoderma.2024.117070","url":null,"abstract":"<div><div>Livestock grazing may affect small mammalian herbivore-soil microbe interactions and their association with the structure and functions of the ecosystem. However, the role of factors such as vegetation and soil nutrients in regulating these impacts is not clear. Here we conducted a 9-year experiment in temperate steppe to study how Brandt’s vole (<em>Lasiopodomys brandtii</em>) affects the soil microbial community under different livestock grazing intensities. This experiment contained 12 field enclosures with three livestock grazing intensities: control (CK), light grazing (LG), and moderate grazing (MG). We found that vole activity does not significantly change soil microbial diversity under non-grazing conditions. However, under livestock grazing conditions, vole activity led to a significant reduction in soil bacterial diversity and an increase in fungal diversity, demonstrating the impacts of livestock grazing on rodents-soil microbe interactions. The activity of voles significantly altered soil bacterial community composition, with changes primarily attributed to variations in the relative abundance of the phyla Actinobacteria, Bacteroidetes, Firmicutes, Gemmatimonadetes, and Proteobacteria. The soil fungal community remained relatively stable despite vole activity, which can be attributed to the richness of fungal colonies in mycelium and their low sensitivity to changes in external conditions. Vole activity also influenced soil microbial functional groups, and the variations in these groups were further amplified by livestock grazing. Furthermore, the shift in the microbial community composition and diversity induced by vole activity were mainly associated with the reduction of plant aboveground biomass. Overall, our study suggested that livestock grazing enhanced the changes in the soil microbial community induced by rodents, underscoring the importance of managing livestock grazing regimes for grassland conservation.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeodermaPub Date : 2024-10-17DOI: 10.1016/j.geoderma.2024.117049
{"title":"High-resolution soil temperature and soil moisture patterns in space, depth and time: An interpretable machine learning modelling approach","authors":"","doi":"10.1016/j.geoderma.2024.117049","DOIUrl":"10.1016/j.geoderma.2024.117049","url":null,"abstract":"<div><div>Soil temperature and soil moisture are key drivers of various soil ecological processes, which implies a significant importance of datasets including their variations in space, depth and time (4D). Current gridded products typically have a low resolution, either spatially or temporally. Here, we aim at modelling and explaining high-resolution soil temperature and soil moisture patterns in 4D for a 400 km<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> study area in a heterogeneous landscape. Our target resolution of 10 m in space, 10 cm in depth, and 1 h in time allows capturing small-scale variations as well as short-term dynamics. We used multi-depth soil temperature and soil moisture measurements from 212 locations and linked them to 45 potential predictors, representing meteorological conditions, soil parameters, vegetation coverage, and landscape relief. We trained random forest models that were able to predict soil temperature with a mean absolute error of 0.93 °C and soil moisture with a mean absolute error of 4.64 % volumetric water content. Continuous model predictions enabled a comprehensive analysis of 4D patterns and confirmed that the selected resolution is essential to capture soil temperature and soil moisture variations at the landscape scale. In addition to a strongly pronounced annual cycle and recognisable influences on the diurnal cycle, there were significant differences between the land uses and patterns due to the relief, which also varied along the depth gradient. By applying interpretable machine learning techniques, we investigated the detailed influence of all drivers and discussed overlapping effects that led to the prediction patterns.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeodermaPub Date : 2024-10-17DOI: 10.1016/j.geoderma.2024.117063
{"title":"Controlled release urea altered the paddy soil heterogeneity at mesoscale qualified by laser induced breakdown spectroscopy","authors":"","doi":"10.1016/j.geoderma.2024.117063","DOIUrl":"10.1016/j.geoderma.2024.117063","url":null,"abstract":"<div><div>Farmland soil shows strong heterogeneity due to crop rotations and fertilizer inputs, and characterization of soil heterogeneity will benefit understanding soil management. In this study, the technique of laser induced breakdown spectroscopy (LIBS) was used to investigate the heterogeneity of paddy soil <em>in-situ</em> at mesoscale (20 μm ∼ 2 mm) under long term input of controlled release nitrogen. Principal component analysis (PCA) of LIBS spectra interpreted elements distribution in the first three PCs. PC1 contained higher proportions of K, O, Al, Si, Na, Ca and Mg information (more than 50 %), PC2 contained more proportions of Li, Ti, Fe, K, Mg and Si information (40 %), and PC3 contained more proportions of Ca, Mg, Mo, Ti and Pb information (35–40 %). The Red-Green-Blue composite using PC1, PC2 and PC3 as color codes was constructed. Soil heterogeneity was <em>in-situ</em> visualized by color blending maps at mesoscale and the hierarchical cluster analysis showed that increasing input of controlled released nitrogen altered soil heterogeneity. Therefore, LIBS provided a method to achieve a digital description of soil heterogeneity at mesoscale, which could be an alternative option to capture spatio-temporal soil information for evaluating the effects of agricultural management on soil quality.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeodermaPub Date : 2024-10-17DOI: 10.1016/j.geoderma.2024.117059
{"title":"Soil metabolic disturbance drives replant disease (intraspecific negative plant–soil feedback): Insights from an experiment examining soil impacts up to 20 years after a ginseng crop","authors":"","doi":"10.1016/j.geoderma.2024.117059","DOIUrl":"10.1016/j.geoderma.2024.117059","url":null,"abstract":"<div><div>Replant diseases (RDs), intraspecific<!--> <!-->negative<!--> <!-->plant–soil<!--> <!-->feedback, often stem from nutrient deficiency, allelopathy, or pathogen accumulation. However, the RDs of certain crops are long-lasting and their causes remain unknown. We examined <em>Panax quinquefolius</em> RD in a space-for-time soil sequence representing crop rotation restoration over 1, 10, and 20 years using multiomics and bioassays. Compared with the soils with no ginseng cultivation history, we found 110 significant potential factors related to RD, surprisingly, 53 of which remained unrestored after 20 years. Soil pH and the levels of organic nutrients (amino acids, carbohydrates, and alditols), allelopathic-promoting metabolites (phenolic acids, amines, pyridines, etc.), and beneficial bacteria (<em>Sphingomonas</em>, <em>Burkholderia-Caballeronia-Paraburkholderia</em>, and <em>Terrabacter</em>) and fungi (<em>Acremonium</em>, <em>Penicillium</em>, and <em>Naganishia</em>) decreased, while the levels of allelochemicals (pyruvic and fatty acids) increased. The expression of all metabolic pathways was significantly down-regulated, with the exception of the up-regulated fatty acid-related metabolic pathways. We confirmed that decreased organic nutrient levels and increased levels of allelochemicals impaired <em>P. quinquefolius</em> growth. Soil metabolic factors rather than microbial factors were dominant by network analysis. In conclusion, we found that the overall changes in nutrient levels and metabolic and microbial factors contributed to short-term RD (1–10 year) persistence, whereas long-term RD (after 20 years) primarily resulted from disordered soil metabolite levels and pathways. This research will help deepen our understanding of the relationship between RD and potential changes in the factors influencing RD that are caused by soil legacy effects of valuable plants and provide theoretical guidance for effective soil quality improvement.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeodermaPub Date : 2024-10-17DOI: 10.1016/j.geoderma.2024.117062
{"title":"Exploring spatiotemporal dynamics in temporal stability of soil carbon, nitrogen, phosphorus, and pH in Tibetan grasslands","authors":"","doi":"10.1016/j.geoderma.2024.117062","DOIUrl":"10.1016/j.geoderma.2024.117062","url":null,"abstract":"<div><div>Effects of human activities and climate change on temporal stability of terrestrial ecosystems remains controversial. This study explored the spatiotemporal patterns and driving mechanisms of the temporal stability of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), their ratios (C:N, C:P, N:P), and pH at 0–10 cm, 10–20 cm, and 20–30 cm in the Tibetan grasslands during 2000–2020. Spatially averaged values of relative changes in temporal stability of soil variables ranged from –19.78 % to –6.85 %. In contrast, the relative changes of temporal stability of soil variables were increased for 31.39–45.98 % grassland areas. Climate change dominated changes in the temporal stability of soil variables in 31.50–44.07 % of grassland areas. Meanwhile, human activities predominated changes in 55.35–68.43 % of it. Compared to precipitation change and warming, radiation change had stronger effects on relative changes of temporal stability of SOC, TN, TP, C:N and C:P at 0–10 cm, SOC and TP at 10–20 cm, and TN and C:N at 20–30 cm. Soil variables themselves were not always positively correlated with their temporal stability, and may even be negatively correlated. Relative changes of temporal stability of soil variables were not always negatively but even positively correlated with relative changes of soil variables. Therefore, the interaction of climate change and human activities can homogenize or heterogeneize the spatial distributions of temporal stability of soil variables. The temporal stability of these soil variables overall decreased, with local increase. The areas of the change of temporal stability of soil variables caused by human activities were greater than those of climate change. Effects of radiation change on the spatio-temporal patterns of temporal stability of soil variables should be underlined. There were not always trade-off relationships between relative changes of soil variables and relative changes of temporal stability of soil variables.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeodermaPub Date : 2024-10-12DOI: 10.1016/j.geoderma.2024.117057
{"title":"Woodchip-filled trenches: A solution to enhance urban water infiltration capacity?","authors":"","doi":"10.1016/j.geoderma.2024.117057","DOIUrl":"10.1016/j.geoderma.2024.117057","url":null,"abstract":"<div><div>Urban water management has been increasingly relying on infiltration to limit the environmental impact of stormwater, secondary treated effluent and gray water. The infiltration systems used are generally based on non-renewable drainage materials featuring a pronounced ecological footprint (i.e., excavation and transport), such as gravel. This paper investigates the possibility of using woodchips instead of traditional drainage materials. Our study examines flow dynamics in woodchip-filled infiltration trenches at four decentralized gray water sites, on a silty clay soil. Infiltration tests were conducted using the Beerkan method to measure soil infiltration capacity both beneath the woodchip-filled trenches and in adjacent soil. Soil hydraulic functions were determined according to the BEST method, then comparisons were drawn between the woodchip-filled trench and natural soil. Results indicate that woodchips locally maintain or enhance soil infiltration rates, with a hydraulic conductivity up to 200 times higher in woodchip-treated soil. Additional soil measurements and analyses serve to formulate hypotheses on how the woodchips actually contribute to these effects. Dye tracer experiments revealed preferential pathways facilitated by macro fauna (earthworms) and, most likely, plant roots. This last information input has been corroborated since earthworm counts did prove to be significantly higher in the woodchips than in the soil. A chemical analysis of the soils also showed a significant enrichment of carbon and nitrogen under the trench, which may also improve soil structure and stability and perhaps indirectly enhance water infiltration capacity. In summary, the presence of woodchips in infiltration trenches improves the soil hydraulic conductivity at saturation for systems that have been in use for 5 to 10 years. These findings underscore the potential of woodchips in sustainable urban water management in order to enhance the functionality and efficiency of drainage materials by means of limiting the clogging effect.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeodermaPub Date : 2024-10-11DOI: 10.1016/j.geoderma.2024.117061
{"title":"Soil-smart cropping for climate-smart production","authors":"","doi":"10.1016/j.geoderma.2024.117061","DOIUrl":"10.1016/j.geoderma.2024.117061","url":null,"abstract":"<div><div>Agriculture faces the dual challenge of sustainably increasing productivity to meet the food demand of a rapidly growing population and adapting to climate change. Despite significant efforts to develop more adaptive and productive crop cultivars and to improve water and nutrient management practices, the potential of crops to tackle this challenge by optimizing soil resource utilization remains underexplored. Here, we propose that optimizing root systems to promote the efficient acquisition of soil resources can increase yield, improve resilience to climate variability, and reduce environmental impacts. This optimization can be achieved through genetic manipulation at the crop species level and effective management of cropping systems at the field level (e.g., intercropping, rotation, and agroforestry). Advances in three-dimensional soil data collection, linking root traits to plant performance, and modelling of climate-soil–plant-management interactions are paving the way for soil-smart cropping. Effective communication and knowledge exchange with stakeholders beyond the scientific community are vital for accelerating the development and adoption of soil-smart practices for climate-smart and sustainable agricultural production.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeodermaPub Date : 2024-10-10DOI: 10.1016/j.geoderma.2024.117060
{"title":"Continuous cropping obstacles: Insights from the community composition and the imbalance carbon fluxes within soil nematode food web","authors":"","doi":"10.1016/j.geoderma.2024.117060","DOIUrl":"10.1016/j.geoderma.2024.117060","url":null,"abstract":"<div><div>Long-term continuous<!--> <!-->cropping<!--> <!-->can lead to the deterioration of soil environment and the decrease of soil productivity. However, the biological mechanism on the negative effects of long-term continuous cropping has not been extensively explored. Soil nematode food web with multiple trophic levels play critical roles in nutrient cycling and energy flowing in the agroecosystem. Quantifying the carbon flux through different trophic channels within the nematode food web can indicate how continuous cropping influences carbon cycling in the agroecosystem by altering soil biota communities. Therefore, the effects of continuous peanut cropping with different years (1, 5, 20, and 30 years) on soil properties, soil nematode community composition, carbon flux within nematode food web and crop yields were investigated. Results showed that soil pH significantly decreased with increasing continuous cropping years. Differently, soil organic carbon and total nitrogen were the highest in 20-year, and decreased in 30-year of continuous cropping. As continuous cropping years increased, the relative abundance of microbivorous nematodes decreased and that of plant parasites reached as high as 76.11 % and 68.22 % in 20- and 30-year, respectively. Pearson correlation analysis revealed the nematode diversity, the carbon flux uniformity and peanut yield had a significant negative correlation with continuous cropping years. The random forest model indicated that the soil pH and the relative abundance of plant parasites were the key influence factor of the carbon flux uniformity within soil nematode food web. Outbreaks of plant parasites lead to the disruption of carbon flux uniformity within soil nematode food web, which can increase the risk of peanut yield decline after long-term continuous cropping. In conclusion, continuous peanut cropping changed soil properties, reduced soil nematode diversity, and disturbed the multitrophic carbon flux complementarity and uniformity in soil nematode food web, ultimately limiting the crop productivity. This study enhances our understanding of the importance of the resource transfers among soil food web in maintaining sustainable agroecosystem productivity.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeodermaPub Date : 2024-10-01DOI: 10.1016/j.geoderma.2024.117035
{"title":"Decadal warming-induced changes in abiotic factors and multitrophic diversity drive soil multifunctionality in an alpine meadow","authors":"","doi":"10.1016/j.geoderma.2024.117035","DOIUrl":"10.1016/j.geoderma.2024.117035","url":null,"abstract":"<div><div>Climate warming can be detrimental to biodiversity and ecosystem multifunctionality. Numerous studies have examined the effect of warming on ecosystem multifunctionality; however, little is known about how long-term warming affects ecosystem multifunctionality and its seasonal dynamics. Here, we determined the effects of long-term (10 years) <em>in-situ</em> soil warming on multitrophic diversity (plants, soil bacteria, soil fungi, arthropods, and nematodes) and soil multifunctionality in an alpine meadow. The effects of warming on multitrophic diversity were inconsistent, showing a positive effect on soil microbial diversity, including bacterial diversity and fungal diversity, in the upper layer (0–10 cm), a negative effect on plant diversity, and no effect on soil fauna diversity in either the upper (0–10 cm) or lower soil layers (10–20 cm). Warming had a minor effect on soil multifunctionality, and reduced seasonal differences in soil multifunctionality in upper soil layers, but expanded the differences in the lower soil layers. Based on structural equation models, both abiotic factors (soil water content and soil pH) and biotic factors (microbial diversity and fauna diversity) jointly influenced soil multifunctionality, with abiotic factors having a greater effect than biotic factors. The findings provide insights in the important effects of long-term warming on seasonal dynamics of soil multifunctionality, and the crucial role of multitrophic diversity for maintaining the sustainable development of the alpine ecosystem under climate warming.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}