Weijun Zhang , Lars J. Munkholm , Richard J. Heck , Christopher W. Watts , Johannes L. Jensen
{"title":"在大团聚体中,团聚体孔隙和形状特性与土壤有机碳的相关性更强:来自长期管理诱导的土壤碳梯度的证据","authors":"Weijun Zhang , Lars J. Munkholm , Richard J. Heck , Christopher W. Watts , Johannes L. Jensen","doi":"10.1016/j.geoderma.2025.117357","DOIUrl":null,"url":null,"abstract":"<div><div>The interplay between soil structure and soil organic carbon (SOC) is complex and affects key soil functions. There is limited knowledge on how this relationship changes with the size of the structural unit studied. The objective of this study was to quantify the pore and shape characteristics of soil aggregates of varying sizes, and their relationships with SOC under different soil management regimes. Soils were sampled in March 2015 from the Highfield Ley-Arable Long-Term Experiment at Rothamsted Research. This experiment includes bare fallow, continuous arable rotation, ley-arable rotation, and grass treatments. A total of 24 aggregates from each treatment and size class (2–4, 4–8, and 8–16 mm) were subjected to X-ray micro-CT scanning at 40 μm voxel resolution. Results showed that permanent grass not only increased SOC accumulation, but also promoted pore connectivity of soil aggregates compared to bare fallow, regardless of aggregate size. Additionally, the pore and shape characteristics of larger aggregates (4–8 and 8–16 mm) were more sensitive to soil management compared to smaller aggregates (2–4 mm). The relationships between SOC and aggregate structural characteristics were strong for both 8–16 and 4–8 mm aggregates but weak for 2–4 mm aggregates. Furthermore, the responses of pore connectivity and sphericity to SOC increased with aggregate size. The results suggest that organic matter input plays an essential role in shaping aggregate structural characteristics and aggregate rearrangement (especially in larger aggregates).</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"459 ","pages":"Article 117357"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aggregate pore and shape properties were more strongly correlated to soil organic carbon in large aggregates: Evidence from a long-term management-induced soil carbon gradient\",\"authors\":\"Weijun Zhang , Lars J. Munkholm , Richard J. Heck , Christopher W. Watts , Johannes L. Jensen\",\"doi\":\"10.1016/j.geoderma.2025.117357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The interplay between soil structure and soil organic carbon (SOC) is complex and affects key soil functions. There is limited knowledge on how this relationship changes with the size of the structural unit studied. The objective of this study was to quantify the pore and shape characteristics of soil aggregates of varying sizes, and their relationships with SOC under different soil management regimes. Soils were sampled in March 2015 from the Highfield Ley-Arable Long-Term Experiment at Rothamsted Research. This experiment includes bare fallow, continuous arable rotation, ley-arable rotation, and grass treatments. A total of 24 aggregates from each treatment and size class (2–4, 4–8, and 8–16 mm) were subjected to X-ray micro-CT scanning at 40 μm voxel resolution. Results showed that permanent grass not only increased SOC accumulation, but also promoted pore connectivity of soil aggregates compared to bare fallow, regardless of aggregate size. Additionally, the pore and shape characteristics of larger aggregates (4–8 and 8–16 mm) were more sensitive to soil management compared to smaller aggregates (2–4 mm). The relationships between SOC and aggregate structural characteristics were strong for both 8–16 and 4–8 mm aggregates but weak for 2–4 mm aggregates. Furthermore, the responses of pore connectivity and sphericity to SOC increased with aggregate size. The results suggest that organic matter input plays an essential role in shaping aggregate structural characteristics and aggregate rearrangement (especially in larger aggregates).</div></div>\",\"PeriodicalId\":12511,\"journal\":{\"name\":\"Geoderma\",\"volume\":\"459 \",\"pages\":\"Article 117357\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoderma\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016706125001958\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706125001958","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Aggregate pore and shape properties were more strongly correlated to soil organic carbon in large aggregates: Evidence from a long-term management-induced soil carbon gradient
The interplay between soil structure and soil organic carbon (SOC) is complex and affects key soil functions. There is limited knowledge on how this relationship changes with the size of the structural unit studied. The objective of this study was to quantify the pore and shape characteristics of soil aggregates of varying sizes, and their relationships with SOC under different soil management regimes. Soils were sampled in March 2015 from the Highfield Ley-Arable Long-Term Experiment at Rothamsted Research. This experiment includes bare fallow, continuous arable rotation, ley-arable rotation, and grass treatments. A total of 24 aggregates from each treatment and size class (2–4, 4–8, and 8–16 mm) were subjected to X-ray micro-CT scanning at 40 μm voxel resolution. Results showed that permanent grass not only increased SOC accumulation, but also promoted pore connectivity of soil aggregates compared to bare fallow, regardless of aggregate size. Additionally, the pore and shape characteristics of larger aggregates (4–8 and 8–16 mm) were more sensitive to soil management compared to smaller aggregates (2–4 mm). The relationships between SOC and aggregate structural characteristics were strong for both 8–16 and 4–8 mm aggregates but weak for 2–4 mm aggregates. Furthermore, the responses of pore connectivity and sphericity to SOC increased with aggregate size. The results suggest that organic matter input plays an essential role in shaping aggregate structural characteristics and aggregate rearrangement (especially in larger aggregates).
期刊介绍:
Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.