G3: Genes|Genomes|Genetics最新文献

筛选
英文 中文
A chromosome-scale genome assembly of Timorese crabgrass (Digitaria radicosa): a useful genomic resource for the Poaceae. 帝汶蟹草(Digitaria radicosa)染色体组规模的基因组组装:Poaceae 的有用基因组资源。
IF 2.1 3区 生物学
G3: Genes|Genomes|Genetics Pub Date : 2024-10-10 DOI: 10.1093/g3journal/jkae242
Koki Minoji, Toshiyuki Sakai
{"title":"A chromosome-scale genome assembly of Timorese crabgrass (Digitaria radicosa): a useful genomic resource for the Poaceae.","authors":"Koki Minoji, Toshiyuki Sakai","doi":"10.1093/g3journal/jkae242","DOIUrl":"https://doi.org/10.1093/g3journal/jkae242","url":null,"abstract":"<p><p>Timorese crabgrass (Digitaria radicosa) is a grass species commonly found in Southeast Asia and Oceania. Digitaria species have high intraspecific and interspecific genetic and phenotypic diversity, suggesting their potential usefulness as a genetic resource. However, as the only high-quality reference genome available is for a tetraploid Digitaria species, a reference genome of the diploid species D. radicosa would be a useful resource for genomic studies of Digitaria and Poaceae plants. Here, we present a chromosome-level genome assembly of D. radicosa and describe its genetic characteristics; we also illustrate its usefulness as a genomic resource for Poaceae. We constructed a 441.6 Mb draft assembly consisting of 61 contigs with an N50 contig length of 41.5 Mb, using PacBio HiFi long reads. We predicted 26,577 protein-coding genes, reaching a BUSCO score of 96.5%. To demonstrate the usefulness of the D. radicosa reference genome, we investigated the evolution of Digitaria species and the genetic diversity of Japanese Digitaria plants based on our new reference genome. We also defined the syntenic blocks between D. radicosa and 2 Poaceae crops, fonio and rice, and the diverse distribution of representative resistance genes in D. radicosa. The D. radicosa reference genome presented here should help elucidate the genetic relatedness of Digitaria species and the genetic diversity of Digitaria plants. In addition, the D. radicosa genome will be an important genomic resource for Poaceae genomics and crop breeding.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142485677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrative multi-omic analysis identifies genes associated with cuticular wax biogenesis in adult maize leaves. 多组学综合分析确定了玉米成株叶片中与角质蜡生物发生相关的基因。
IF 2.1 3区 生物学
G3: Genes|Genomes|Genetics Pub Date : 2024-10-10 DOI: 10.1093/g3journal/jkae241
Meng Lin, Harel Bacher, Richard Bourgault, Pengfei Qiao, Susanne Matschi, Miguel F Vasquez, Marc Mohammadi, Sarah van Boerdonk, Michael J Scanlon, Laurie G Smith, Isabel Molina, Michael A Gore
{"title":"Integrative multi-omic analysis identifies genes associated with cuticular wax biogenesis in adult maize leaves.","authors":"Meng Lin, Harel Bacher, Richard Bourgault, Pengfei Qiao, Susanne Matschi, Miguel F Vasquez, Marc Mohammadi, Sarah van Boerdonk, Michael J Scanlon, Laurie G Smith, Isabel Molina, Michael A Gore","doi":"10.1093/g3journal/jkae241","DOIUrl":"https://doi.org/10.1093/g3journal/jkae241","url":null,"abstract":"<p><p>Studying the genetic basis of leaf wax composition and its correlation with leaf cuticular conductance (gc) is crucial for improving crop productivity. The leaf cuticle, which comprises a cutin matrix and various waxes, functions as an extracellular hydrophobic layer, protecting against water loss upon stomatal closure. To address the limited understanding of genes associated with the natural variation of adult leaf cuticular waxes and their connection to gc, we conducted statistical genetic analyses using leaf transcriptomic, metabolomic, and physiological data sets collected from a maize (Zea mays L.) panel of ∼300 inbred lines. Through a random forest analysis with 60 cuticular wax traits, it was shown that high molecular weight wax esters play an important role in predicting gc. Integrating results from genome-wide and transcriptome-wide studies (GWAS and TWAS) via a Fisher's combined test revealed 231 candidate genes detected by all three association tests. Among these, 11 genes exhibit known or predicted roles in cuticle-related processes. Throughout the genome, multiple hotspots consisting of GWAS signals for several traits from one or more wax classes were discovered, identifying four additional plausible candidate genes and providing insights into the genetic basis of correlated wax traits. Establishing a partially shared genetic architecture, we identified 35 genes for both gc and at least one wax trait, with four considered plausible candidates. Our study enhances the understanding of how adult leaf cuticle wax composition relates to gc and implicates both known and novel candidate genes as potential targets for optimizing productivity in maize.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142462207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing the evolutionary history and contemporary population structure of Pacific salmon in the Fraser River through genome resequencing. 通过基因组重测序揭示菲沙河太平洋鲑鱼的进化史和当代种群结构。
IF 2.1 3区 生物学
G3: Genes|Genomes|Genetics Pub Date : 2024-10-07 DOI: 10.1093/g3journal/jkae169
Kris A Christensen, Anne-Marie Flores, Dionne Sakhrani, Carlo A Biagi, Robert H Devlin, Ben J G Sutherland, Ruth E Withler, Eric B Rondeau, Ben F Koop
{"title":"Revealing the evolutionary history and contemporary population structure of Pacific salmon in the Fraser River through genome resequencing.","authors":"Kris A Christensen, Anne-Marie Flores, Dionne Sakhrani, Carlo A Biagi, Robert H Devlin, Ben J G Sutherland, Ruth E Withler, Eric B Rondeau, Ben F Koop","doi":"10.1093/g3journal/jkae169","DOIUrl":"10.1093/g3journal/jkae169","url":null,"abstract":"<p><p>The Fraser River once supported massive salmon returns. However, over the last century, the largest returns have consistently been less than half of the recorded historical maximum. There is substantial interest from surrounding communities and governments to increase salmon returns for both human use and functional ecosystems. To generate resources for this endeavor, we resequenced genomes of Chinook (Oncorhynchus tshawytscha), coho (Oncorhynchus kisutch), and sockeye salmon (Oncorhynchus nerka) from the Fraser River at moderate coverage (∼16×). A total of 954 resequenced genomes were analyzed, with 681 collected specifically for this study from tissues sampled between 1997 and 2021. An additional 273 were collected from previous studies. At the species level, Chinook salmon appeared to have 1.6-2.1× more SNPs than coho or sockeye salmon, respectively. This difference may be attributable to large historical declines of coho and sockeye salmon. At the population level, 3 Fraser River genetic groups were identified for each species using principal component and admixture analyses. These were consistent with previous research and supports the continued use of these groups in conservation and management efforts. Environmental factors and a migration barrier were identified as major factors influencing the boundaries of these genetic groups. Additionally, 20 potentially adaptive loci were identified among the genetic groups. This information may be valuable in new management and conservation efforts. Furthermore, the resequenced genomes are an important resource for contemporary genomics research on Fraser River salmon and have been made publicly available.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457079/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Snow alga Sanguina aurantia as revealed through de novo genome assembly and annotation. 通过全新基因组组装和注释揭示的雪藻 Sanguina aurantia。
IF 2.1 3区 生物学
G3: Genes|Genomes|Genetics Pub Date : 2024-10-07 DOI: 10.1093/g3journal/jkae181
Breanna B Raymond, Pierre Guenzi-Tiberi, Eric Maréchal, Lynne M Quarmby
{"title":"Snow alga Sanguina aurantia as revealed through de novo genome assembly and annotation.","authors":"Breanna B Raymond, Pierre Guenzi-Tiberi, Eric Maréchal, Lynne M Quarmby","doi":"10.1093/g3journal/jkae181","DOIUrl":"10.1093/g3journal/jkae181","url":null,"abstract":"<p><p>To thrive on melting alpine and polar snow, some Chlorophytes produce an abundance of astaxanthin, causing red blooms, often dominated by genus Sanguina. The red cells have not been cultured, but we recently grew a green biciliate conspecific with Sanguina aurantia from a sample of watermelon snow. This culture provided source material for Oxford Nanopore Technology and Illumina sequencing. Our assembly pipeline exemplifies the value of a hybrid long- and short-read approach for the complexities of working with a culture grown from a field sample. Using bioinformatic tools, we separated assembled contigs into 2 genomic pools based on a difference in GC content (57.5 and 55.1%). We present the data as 2 assemblies of S. aurantia variants but explore other possibilities. High-throughput chromatin conformation capture analysis (Hi-C sequencing) was used to scaffold the assemblies into a 96-Mb genome designated as \"A\" and a 102-Mb genome designated as \"B.\" Both assemblies are highly contiguous: genome A consists of 38 scaffolds with an N50 of 5.4 Mb, while genome B has 50 scaffolds with an N50 of 6.4 Mb. RNA sequencing was used to improve gene annotation.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457085/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-species transcriptomics reveals differential regulation of essential photosynthesis genes in Hirschfeldia incana. 跨物种转录组学揭示了 Hirschfeldia incana 中重要光合作用基因的差异调控。
IF 2.1 3区 生物学
G3: Genes|Genomes|Genetics Pub Date : 2024-10-07 DOI: 10.1093/g3journal/jkae175
Francesco Garassino, Sofia Bengoa Luoni, Tommaso Cumerlato, Francisca Reyes Marquez, Jeremy Harbinson, Mark G M Aarts, Harm Nijveen, Sandra Smit
{"title":"Cross-species transcriptomics reveals differential regulation of essential photosynthesis genes in Hirschfeldia incana.","authors":"Francesco Garassino, Sofia Bengoa Luoni, Tommaso Cumerlato, Francisca Reyes Marquez, Jeremy Harbinson, Mark G M Aarts, Harm Nijveen, Sandra Smit","doi":"10.1093/g3journal/jkae175","DOIUrl":"10.1093/g3journal/jkae175","url":null,"abstract":"<p><p>Photosynthesis is the only yield-related trait not yet substantially improved by plant breeding. Previously, we have established H. incana as the model plant for high photosynthetic light-use efficiency (LUE). Now we aim to unravel the genetic basis of this trait in H. incana, potentially contributing to the improvement of photosynthetic LUE in other species. Here, we compare its transcriptomic response to high light with that of Arabidopsis thaliana, Brassica rapa, and Brassica nigra, 3 fellow Brassicaceae members with lower photosynthetic LUE. We built a high-light, high-uniformity growing environment, in which the plants developed normally without signs of stress. We compared gene expression in contrasting light conditions across species, utilizing a panproteome to identify orthologous proteins. In-depth analysis of 3 key photosynthetic pathways showed a general trend of lower gene expression under high-light conditions for all 4 species. However, several photosynthesis-related genes in H. incana break this trend. We observed cases of constitutive higher expression (like antenna protein LHCB8), treatment-dependent differential expression (as for PSBE), and cumulative higher expression through simultaneous expression of multiple gene copies (like LHCA6). Thus, H. incana shows differential regulation of essential photosynthesis genes, with the light-harvesting complex as the first point of deviation. The effect of these expression differences on protein abundance and turnover, and ultimately the high photosynthetic LUE phenotype is relevant for further investigation. Furthermore, this transcriptomic resource of plants fully grown under, rather than briefly exposed to, a very high irradiance, will support the development of highly efficient photosynthesis in crops.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457080/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loss of genetic variation and ancestral sex determination system in North American northern pike characterized by whole-genome resequencing. 通过全基因组重测序鉴定北美梭鱼基因变异的丧失和祖先的性别决定系统。
IF 2.1 3区 生物学
G3: Genes|Genomes|Genetics Pub Date : 2024-10-07 DOI: 10.1093/g3journal/jkae183
Hollie A Johnson, Eric B Rondeau, Ben J G Sutherland, David R Minkley, Jong S Leong, Joanne Whitehead, Cody A Despins, Brent E Gowen, Brian J Collyard, Christopher M Whipps, John M Farrell, Ben F Koop
{"title":"Loss of genetic variation and ancestral sex determination system in North American northern pike characterized by whole-genome resequencing.","authors":"Hollie A Johnson, Eric B Rondeau, Ben J G Sutherland, David R Minkley, Jong S Leong, Joanne Whitehead, Cody A Despins, Brent E Gowen, Brian J Collyard, Christopher M Whipps, John M Farrell, Ben F Koop","doi":"10.1093/g3journal/jkae183","DOIUrl":"10.1093/g3journal/jkae183","url":null,"abstract":"<p><p>The northern pike Esox lucius is a freshwater fish with low genetic diversity but ecological success throughout the Northern Hemisphere. Here, we generate an annotated chromosome-level genome assembly of 941 Mbp in length with 25 chromosome-length scaffolds. We then genotype 47 northern pike from Alaska through New Jersey at a genome-wide scale and characterize a striking decrease in genetic diversity along the sampling range. Individuals west of the North American Continental Divide have substantially higher diversity than those to the east (e.g. Interior Alaska and St. Lawrence River have on average 181 and 64K heterozygous SNPs per individual, or a heterozygous SNP every 5.2 and 14.6 kbp, respectively). Individuals clustered within each population with strong support, with numerous private alleles observed within each population. Evidence for recent population expansion was observed for a Manitoba hatchery and the St. Lawrence population (Tajima's D = -1.07 and -1.30, respectively). Several chromosomes have large regions with elevated diversity, including LG24, which holds amhby, the ancestral sex determining gene. As expected amhby was largely male-specific in Alaska and the Yukon and absent southeast to these populations, but we document some amhby(-) males in Alaska and amhby(+) males in the Columbia River, providing evidence for a patchwork of presence of this system in the western region. These results support the theory that northern pike recolonized North America from refugia in Alaska and expanded following deglaciation from west to east, with probable founder effects resulting in loss of both neutral and functional diversity (e.g. amhby).</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome analysis of the esca-associated Basidiomycetes Fomitiporia mediterranea, Fomitiporia polymorpha, Inonotus vitis, and Tropicoporus texanus reveals virulence factor repertoires characteristic of white-rot fungi. 对与埃斯卡相关的基枝孢霉 Fomitiporia mediterranea、Fomitiporia polymorpha、Inonotus vitis 和 Tropicoporus texanus 的基因组分析显示了白腐真菌特有的毒力因子再现。
IF 2.1 3区 生物学
G3: Genes|Genomes|Genetics Pub Date : 2024-10-07 DOI: 10.1093/g3journal/jkae189
Jadran F Garcia, Rosa Figueroa-Balderas, Gwenaëlle Comont, Chloé E L Delmas, Kendra Baumgartner, Dario Cantu
{"title":"Genome analysis of the esca-associated Basidiomycetes Fomitiporia mediterranea, Fomitiporia polymorpha, Inonotus vitis, and Tropicoporus texanus reveals virulence factor repertoires characteristic of white-rot fungi.","authors":"Jadran F Garcia, Rosa Figueroa-Balderas, Gwenaëlle Comont, Chloé E L Delmas, Kendra Baumgartner, Dario Cantu","doi":"10.1093/g3journal/jkae189","DOIUrl":"10.1093/g3journal/jkae189","url":null,"abstract":"<p><p>Some Basidiomycete fungi are important plant pathogens, and certain species have been associated with the grapevine trunk disease esca. We present the genomes of 4 species associated with esca: Fomitiporia mediterranea, Fomitiporia polymorpha, Tropicoporus texanus, and Inonotus vitis. We generated high-quality phased genome assemblies using long-read sequencing. The genomic and functional comparisons identified potential virulence factors, suggesting their roles in disease development. Similar to other white-rot fungi known for their ability to degrade lignocellulosic substrates, these 4 genomes encoded a variety of lignin peroxidases and carbohydrate-active enzymes (CAZymes) such as CBM1, AA9, and AA2. The analysis of gene family expansion and contraction revealed dynamic evolutionary patterns, particularly in genes related to secondary metabolite production, plant cell wall decomposition, and xenobiotic degradation. The availability of these genomes will serve as a reference for further studies of diversity and evolution of virulence factors and their roles in esca symptoms and host resistance.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141982017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypomorphic mutation in the large subunit of replication protein A affects mutagenesis by human APOBEC cytidine deaminases in yeast. 复制蛋白 A 大亚基的畸形突变会影响酵母中人类 APOBEC 胞苷脱氨酶的诱变作用。
IF 2.1 3区 生物学
G3: Genes|Genomes|Genetics Pub Date : 2024-10-07 DOI: 10.1093/g3journal/jkae196
Matthew S Dennen, Zachary W Kockler, Steven A Roberts, Adam B Burkholder, Leszek J Klimczak, Dmitry A Gordenin
{"title":"Hypomorphic mutation in the large subunit of replication protein A affects mutagenesis by human APOBEC cytidine deaminases in yeast.","authors":"Matthew S Dennen, Zachary W Kockler, Steven A Roberts, Adam B Burkholder, Leszek J Klimczak, Dmitry A Gordenin","doi":"10.1093/g3journal/jkae196","DOIUrl":"10.1093/g3journal/jkae196","url":null,"abstract":"<p><p>Human APOBEC single-strand (ss) specific DNA and RNA cytidine deaminases change cytosines to uracils (U's) and function in antiviral innate immunity and RNA editing and can cause hypermutation in chromosomes. The resulting U's can be directly replicated, resulting in C to T mutations, or U-DNA glycosylase can convert the U's to abasic (AP) sites which are then fixed as C to T or C to G mutations by translesion DNA polymerases. We noticed that in yeast and in human cancers, contributions of C to T and C to G mutations depend on the origin of ssDNA mutagenized by APOBECs. Since ssDNA in eukaryotic genomes readily binds to replication protein A (RPA) we asked if RPA could affect APOBEC-induced mutation spectrum in yeast. For that purpose, we expressed human APOBECs in the wild-type (WT) yeast and in strains carrying a hypomorph mutation rfa1-t33 in the large RPA subunit. We confirmed that the rfa1-t33 allele can facilitate mutagenesis by APOBECs. We also found that the rfa1-t33 mutation changed the ratio of APOBEC3A-induced T to C and T to G mutations in replicating yeast to resemble a ratio observed in long persistent ssDNA in yeast and in cancers. We present the data suggesting that RPA may shield APOBEC formed U's in ssDNA from Ung1, thereby facilitating C to T mutagenesis through the accurate copying of U's by replicative DNA polymerases. Unexpectedly, we also found that for U's shielded from Ung1 by WT RPA, the mutagenic outcome is reduced in the presence of translesion DNA polymerase zeta.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosome-scale genome assembly of the hunt bumble bee, Bombus huntii Greene, 1860, a species of agricultural interest. 亨特大黄蜂(Bombus huntii Greene,1860 年)的染色体级基因组组装,亨特大黄蜂是一个具有农业意义的物种。
IF 2.1 3区 生物学
G3: Genes|Genomes|Genetics Pub Date : 2024-10-07 DOI: 10.1093/g3journal/jkae160
Jonathan Berenguer Uhuad Koch, Sheina B Sim, Brian Scheffler, Jeffrey D Lozier, Scott M Geib
{"title":"Chromosome-scale genome assembly of the hunt bumble bee, Bombus huntii Greene, 1860, a species of agricultural interest.","authors":"Jonathan Berenguer Uhuad Koch, Sheina B Sim, Brian Scheffler, Jeffrey D Lozier, Scott M Geib","doi":"10.1093/g3journal/jkae160","DOIUrl":"10.1093/g3journal/jkae160","url":null,"abstract":"<p><p>The Hunt bumble bee, Bombus huntii, is a widely distributed pollinator in western North America. The species produces large colony sizes in captive rearing conditions, experiences low parasite and pathogen loads, and has been demonstrated to be an effective pollinator of tomatoes grown in controlled environment agriculture systems. These desirable traits have galvanized producer efforts to develop commercial Bombus huntii colonies for growers to deliver pollination services to crops. To better understand Bombus huntii biology and support population genetic studies and breeding decisions, we sequenced and assembled the Bombus huntii genome from a single haploid male. High-fidelity sequencing of the entire genome using PacBio, along with HiC sequencing, led to a comprehensive contig assembly of high continuity. This assembly was further organized into a chromosomal arrangement, successfully identifying 18 chromosomes spread across the 317.4 Mb assembly with a BUSCO score indicating 97.6% completeness. Synteny analysis demonstrates shared chromosome number (n = 18) with Bombus terrestris, a species belonging to a different subgenus, matching the expectation that presence of 18 haploid chromosomes is an ancestral trait at least between the subgenera Pyrobombus and Bombus sensu stricto. In conclusion, the assembly outcome, alongside the minimal tissue sampled destructively, showcases efficient techniques for producing a comprehensive, highly contiguous genome.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic prediction of regional-scale performance in switchgrass (Panicum virgatum) by accounting for genotype-by-environment variation and yield surrogate traits. 通过考虑基因型-环境变异和产量代用性状,从基因组学角度预测开关草(Panicum virgatum)在区域范围内的表现。
IF 2.1 3区 生物学
G3: Genes|Genomes|Genetics Pub Date : 2024-10-07 DOI: 10.1093/g3journal/jkae159
Neal W Tilhou, Jason Bonnette, Arvid R Boe, Philip A Fay, Felix B Fritschi, Robert B Mitchell, Francis M Rouquette, Yanqi Wu, Julie D Jastrow, Michael Ricketts, Shelley D Maher, Thomas E Juenger, David B Lowry
{"title":"Genomic prediction of regional-scale performance in switchgrass (Panicum virgatum) by accounting for genotype-by-environment variation and yield surrogate traits.","authors":"Neal W Tilhou, Jason Bonnette, Arvid R Boe, Philip A Fay, Felix B Fritschi, Robert B Mitchell, Francis M Rouquette, Yanqi Wu, Julie D Jastrow, Michael Ricketts, Shelley D Maher, Thomas E Juenger, David B Lowry","doi":"10.1093/g3journal/jkae159","DOIUrl":"10.1093/g3journal/jkae159","url":null,"abstract":"<p><p>Switchgrass is a potential crop for bioenergy or carbon capture schemes, but further yield improvements through selective breeding are needed to encourage commercialization. To identify promising switchgrass germplasm for future breeding efforts, we conducted multisite and multitrait genomic prediction with a diversity panel of 630 genotypes from 4 switchgrass subpopulations (Gulf, Midwest, Coastal, and Texas), which were measured for spaced plant biomass yield across 10 sites. Our study focused on the use of genomic prediction to share information among traits and environments. Specifically, we evaluated the predictive ability of cross-validation (CV) schemes using only genetic data and the training set (cross-validation 1: CV1), a subset of the sites (cross-validation 2: CV2), and/or with 2 yield surrogates (flowering time and fall plant height). We found that genotype-by-environment interactions were largely due to the north-south distribution of sites. The genetic correlations between the yield surrogates and the biomass yield were generally positive (mean height r = 0.85; mean flowering time r = 0.45) and did not vary due to subpopulation or growing region (North, Middle, or South). Genomic prediction models had CV predictive abilities of -0.02 for individuals using only genetic data (CV1), but 0.55, 0.69, 0.76, 0.81, and 0.84 for individuals with biomass performance data from 1, 2, 3, 4, and 5 sites included in the training data (CV2), respectively. To simulate a resource-limited breeding program, we determined the predictive ability of models provided with the following: 1 site observation of flowering time (0.39); 1 site observation of flowering time and fall height (0.51); 1 site observation of fall height (0.52); 1 site observation of biomass (0.55); and 5 site observations of biomass yield (0.84). The ability to share information at a regional scale is very encouraging, but further research is required to accurately translate spaced plant biomass to commercial-scale sward biomass performance.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457067/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信