Free Radical Biology and Medicine最新文献

筛选
英文 中文
Hydrogen regulated pyroptosis through NLRP3-GSDMD pathway to improve airway mucosal oxidative stress injury induced by endotracheal tube cuff compression 氢气通过 NLRP3-GSDMD 通路调控热凋亡,以改善气管导管袖带压迫引起的气道粘膜氧化应激损伤。
IF 7.1 2区 生物学
Free Radical Biology and Medicine Pub Date : 2024-08-30 DOI: 10.1016/j.freeradbiomed.2024.08.035
{"title":"Hydrogen regulated pyroptosis through NLRP3-GSDMD pathway to improve airway mucosal oxidative stress injury induced by endotracheal tube cuff compression","authors":"","doi":"10.1016/j.freeradbiomed.2024.08.035","DOIUrl":"10.1016/j.freeradbiomed.2024.08.035","url":null,"abstract":"<div><p>The cuff of endotracheal tube (ETT) is an indispensable device for establishing an artificial airway, yet cuff-induced compression often causes damage to the airway mucosa. The mechanism of this damage involves mucosal compression ischemia and the oxidative stress injury following reperfusion. Currently, there is a lack of effective strategies to protect the mucosa. Hydrogen, as a natural antioxidant, has demonstrated significant potential in the prevention and treatment of oxidative stress injuries. This study aimed to determine the protective effects of hydrogen on compressed airway mucosa. We found that the damage to the airway mucosa caused by ETT cuff compression was associated with oxidative stress-induced pyroptosis of airway epithelial cells. Inhalation of hydrogen effectively reduced the levels of reactive oxygen species, significantly ameliorating changes in epithelial cell pyroptosis, and this protective effect is linked to the inhibition of the NLRP3-GSDMD pathway. Further cellular studies, involving knockdown and overexpression of NLRP3, clarified that hydrogen exerts its protective effects on the airway mucosa by inhibiting epithelial cell pyroptosis. Additionally, we observed that using hydrogen-rich saline to inflate the ETT cuff in patients under general anesthesia significantly reduced postoperative sore throat. This study confirms that hydrogen effectively enhances tolerance of airway mucosa to oxidative stress injuries, offering a potential preventive and therapeutic strategy for protecting the airway mucosa in patients undergoing endotracheal intubation.</p></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the binding of auranofin to Prdx6 and its potential role in cancer cell sensitivity to treatment 欧拉诺芬与 Prdx6 的结合及其在癌细胞对治疗敏感性中的潜在作用。
IF 7.1 2区 生物学
Free Radical Biology and Medicine Pub Date : 2024-08-30 DOI: 10.1016/j.freeradbiomed.2024.08.042
{"title":"On the binding of auranofin to Prdx6 and its potential role in cancer cell sensitivity to treatment","authors":"","doi":"10.1016/j.freeradbiomed.2024.08.042","DOIUrl":"10.1016/j.freeradbiomed.2024.08.042","url":null,"abstract":"<div><p>In this study, we demonstrate that ferroptosis is a component of the cell death mechanism induced by auranofin in HT-1080 cells, in contrast to the gold(III) compounds [Au(phen)Cl<sub>2</sub>]PF<sub>6</sub> and [Au(bnpy)Cl<sub>2</sub>]. Additionally, we identify a potential role of Prdx6 in modulating the sensitivity of A-375 cells to auranofin treatment, whereas the gold(III) compounds evaluated here exhibit Prdx6-independent cytotoxicity. Finally, using mass spectrometry, we show that auranofin binds selectively to the catalytic Cys47 residue of Prdx6 <em>in vitro</em> under acidic conditions. No binding was observed with the C47S mutant or at neutral pH.</p></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting ALDH2 to augment platinum-based chemosensitivity through ferroptosis in lung adenocarcinoma 以 ALDH2 为靶点,通过肺腺癌中的铁肽化作用增强对铂类药物的化疗敏感性
IF 7.1 2区 生物学
Free Radical Biology and Medicine Pub Date : 2024-08-30 DOI: 10.1016/j.freeradbiomed.2024.08.026
{"title":"Targeting ALDH2 to augment platinum-based chemosensitivity through ferroptosis in lung adenocarcinoma","authors":"","doi":"10.1016/j.freeradbiomed.2024.08.026","DOIUrl":"10.1016/j.freeradbiomed.2024.08.026","url":null,"abstract":"<div><p>Ferroptosis is a regulated cell death driven by iron-dependent lipid peroxidation and associated with drug resistance in lung adenocarcinoma (LUAD). It's found that aldehyde dehydrogenase 2 (ALDH2), which is highly mutated in East Asian populations, is correlated with response to chemotherapy in LUAD patients. The rs671 variant knock-in, downregulation, and pharmacological inhibition of ALDH2 render LUAD cells more vulnerable to ferroptosis inducers and platinum-based chemotherapy. ALDH2 inhibits ferroptosis through the detoxification of 4-hydroxynonenal and malondialdehyde, the product of lipid peroxidation, as well as the production of NADH at the same time. Besides, ALDH2 deficiency leads to elevated intracellular pH (pHi), thus inhibiting the ERK/CREB1/GPX4 axis. Interestingly, ALDH2 is also regulated by CREB1, and the ALDH2 enzyme activity was decreased with elevated pHi. What's more, the elevated pHi caused by impaired ALDH2 activity promotes the biosynthesis of lipid droplets to counteract ferroptosis. At last, the effect of ALDH2 on ferroptosis and chemosensitivity is confirmed in patient-derived organoids and xenograft models. Collectively, this study demonstrates that ALDH2 deficiency confers sensitivity to platinum through ferroptosis in LUAD, and targeting ALDH2 is a promising new strategy to enhance the sensitivity of platinum-based chemotherapy for the treatment of LUAD patients.</p></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epithelial Piezo1 deletion ameliorates intestinal barrier damage by regulating ferroptosis in ulcerative colitis 上皮细胞 Piezo1 基因缺失可通过调节溃疡性结肠炎患者的铁蛋白沉积来改善肠屏障损伤。
IF 7.1 2区 生物学
Free Radical Biology and Medicine Pub Date : 2024-08-29 DOI: 10.1016/j.freeradbiomed.2024.08.039
{"title":"Epithelial Piezo1 deletion ameliorates intestinal barrier damage by regulating ferroptosis in ulcerative colitis","authors":"","doi":"10.1016/j.freeradbiomed.2024.08.039","DOIUrl":"10.1016/j.freeradbiomed.2024.08.039","url":null,"abstract":"<div><p>Ferroptosis, a recently discovered form of regulated cell death, has been implicated in the development of ulcerative colitis (UC). While Piezo1's role in inducing ferroptosis in chondrocytes and pulmonary endothelial cells is documented, its regulatory function in ferroptosis and intestinal epithelial cells in UC remains unclear. To address this, colonic tissue samples from patients with UC were examined, and specific intestinal epithelial Piezo1-deficient (Piezo1<sup>ΔIEC</sup>) mice were created to investigate Piezo1's role in UC pathogenesis. Elevated epithelial Piezo1 levels were observed in patients with UC, correlating with increased ferroptosis and tight junction (TJ) disruption. In dextran sulfate sodium (DSS)-induced colitis, Piezo1<sup>ΔIEC</sup> mice exhibited significantly reduced intestinal inflammation and improved gut barrier function compared to wild-type (WT) mice. Moreover, Piezo1 deficiency in colitis mice and lipopolysaccharide (LPS)-stimulated Caco-2 cells led to higher TJ protein levels, reduced lipid peroxidation, enhanced mitochondrial function, and altered expression of ferroptosis-associated proteins. Additionally, erastin, a ferroptosis activator, reversed the protective effect of Piezo1 silencing against LPS-induced ferroptosis in Caco-2 cells. Mechanistically, Piezo1 was found to regulate ferroptosis <em>via</em> the AMPK/mTOR signaling pathway. These findings highlight a novel role for Piezo1 deletion in mitigating ferroptosis in intestinal epithelial cells, suggesting Piezo1 as a potential therapeutic target for UC treatment.</p></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of cigarette smoke in promoting small airway remodeling in mice via STAT 3 / PINK 1-Parkin / EMT 香烟烟雾通过 STAT 3 / PINK 1-Parkin / EMT 促进小鼠小气道重塑的机制
IF 7.1 2区 生物学
Free Radical Biology and Medicine Pub Date : 2024-08-29 DOI: 10.1016/j.freeradbiomed.2024.08.036
{"title":"Mechanism of cigarette smoke in promoting small airway remodeling in mice via STAT 3 / PINK 1-Parkin / EMT","authors":"","doi":"10.1016/j.freeradbiomed.2024.08.036","DOIUrl":"10.1016/j.freeradbiomed.2024.08.036","url":null,"abstract":"<div><h3>Background</h3><p>Airway remodeling is an important pathological of airflow limitation in chronic obstructive pulmonary disease (COPD).However,its mechanism still needs to be further clarify.</p></div><div><h3>Methods</h3><p>Animals:Healthy male C57BL/6 mice aged 4–6 weeks were randomly divided into control group and cigarette smoke(CS)group. Mice in the CS group were placed in a homemade glass fumigator, 5 cigarettes/time, 40 min/time, 4 times/day, 5 days/week, for 24 weeks. Mice in the control group were placed in a normal air environment.Cells:BEAS-2B cells were stimulated with 0.1%cigarette smoke extract(CSE).HE staining, immunohistochemical staining and Masson staining were used to observe the pathological of lung tissues, transmission electron microscopy was used to observe the structural of mitochondria in bronchial epithelial cells.Western blotting was used to detect the expression of STAT3,transforming growth factor-β1(TGF-β1),microtubule-associated protein 1A/1B-light chain3(LC3),PINK1,Parkin,E-cadherin,zonula occludens1(ZO-1),vimentin and snail family transcriptional inhibitor1 (Snail1),and MitoSOX Red was used to detect mitochondrial reactive oxygen species(mtROS).</p></div><div><h3>Results</h3><p>CS exposure causes lung parenchymal destruction and airway remodeling in mice.Compared to the control group,the expression of p-STAT3,TGF-β1 and EMT in the whole lung homogenate of the CS group was increased.Mitochondrial architecture disruption in bronchial epithelial cells of CS mice, with impaired PINK1-Parkin-dependent mitophagy.In vitro experiments showed that CSE exposure led to STAT3 activation, increased TGF-β1,EMT and enhanced PINK1-Parkin-mediated mitophagy.STAT3 inhibition reversed TGF-β1 upregulation induced by CSE and improved CSE-induced EMT and mitophagy.Inhibition of mitophagy improves EMT induced by CSE. Inhibition of mitophagy reduces STAT3-induced EMT.</p></div><div><h3>Conclusion</h3><p>CS activates the STAT3,and activated STAT3 promotes EMT in bronchial epithelial cells by enhancing PINK1-Parkin-mediated mitophagy and TGF-β1 signaling.Moreover, activated STAT3 can promote EMT directly.This may be one of the mechanisms by which CS causes small airway remodeling in COPD.</p></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Caffeic acid ameliorates metabolic dysfunction-associated steatotic liver disease via alleviating oxidative damage and lipid accumulation in hepatocytes through activating Nrf2 via targeting Keap1 咖啡酸通过靶向 Keap1 激活 Nrf2,减轻肝细胞中的氧化损伤和脂质积累,从而改善代谢功能障碍相关性脂肪性肝病
IF 7.1 2区 生物学
Free Radical Biology and Medicine Pub Date : 2024-08-28 DOI: 10.1016/j.freeradbiomed.2024.08.038
{"title":"Caffeic acid ameliorates metabolic dysfunction-associated steatotic liver disease via alleviating oxidative damage and lipid accumulation in hepatocytes through activating Nrf2 via targeting Keap1","authors":"","doi":"10.1016/j.freeradbiomed.2024.08.038","DOIUrl":"10.1016/j.freeradbiomed.2024.08.038","url":null,"abstract":"<div><p>Metabolic-associated steatotic liver disease (MASLD), known as non-alcoholic fatty liver disease (NAFLD) in the past, encompasses a range of liver pathological conditions marked by the excessive lipid accumulation. Consumption of coffee is closely associated with the reduced risk of MASLD. Caffeic acid (CA), a key active ingredient in coffee, exhibits notable hepatoprotective properties. This study aims to investigate the improvement of CA on MASLD and the engaged mechanism. Mice underwent a 12-week high-fat diet (HFD) regimen to induce MASLD, and liver pathology was assessed using hematoxylin-eosin (H&amp;E) and oil red O (ORO) staining. Hepatic inflammation was evaluated by F4/80 and Ly6G immunohistochemistry (IHC) and myeloperoxidase (MPO) measurement. Pathways and transcription factors relevant to MASLD were analyzed by using microarray data from patients' livers. Oxidative damage was evaluated by detecting reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD). Co-immunoprecipitation (CoIP), cellular thermal shift assay (CETSA) and surface plasmon resonance (SPR) were used to validate the binding between CA and its target protein. CA significantly alleviated liver damage, steatosis and inflammatory injury, and reduced the elevated NAFLD activity score (NAS) in HFD-fed mice. Clinical data indicate that fatty acid metabolism and ROS generation are pivotal in MASLD progression. CA increased the expression of fibroblast growth factor 21 (FGF21), FGF receptor 1 (FGFR1) and <em>β</em>-Klotho (KLB), and promoted fatty acid consumption. Additionally, CA mitigated oxidative stress injury and activated nuclear factor erythroid 2-related factor-2 (Nrf2). In primary hepatocytes isolated from Nrf2 knockout mice, CA's promotion on FGF21 release and inhibition on oxidative stress and lipotoxicity was disappeared. CA could directly bind to kelch-like ECH-associated protein 1 (Keap1) that is an Nrf2 inhibitor protein. This study suggests that CA alleviates MASLD by reducing hepatic lipid accumulation, lipotoxicity and oxidative damage through activating Nrf2 via binding to Keap1.</p></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
25-Hydroxycholesterol inhibits Hantavirus infection by reprogramming cholesterol metabolism 25-羟基胆固醇通过重编程胆固醇代谢抑制汉坦病毒感染
IF 7.1 2区 生物学
Free Radical Biology and Medicine Pub Date : 2024-08-28 DOI: 10.1016/j.freeradbiomed.2024.08.029
{"title":"25-Hydroxycholesterol inhibits Hantavirus infection by reprogramming cholesterol metabolism","authors":"","doi":"10.1016/j.freeradbiomed.2024.08.029","DOIUrl":"10.1016/j.freeradbiomed.2024.08.029","url":null,"abstract":"<div><p>Hantavirus causes two types of acute diseases: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. It is a major health concern due to its high mortality and lack of effective treatment. Type I interferon treatment has been suggested to be effective against hantavirus when treated in advance. Interferons induce multiple interferon-stimulated genes (ISGs), whose products are highly effective at resisting and controlling viruses. A product of ISGs, the enzyme cholesterol 25-hydroxylase (CH25H), catalyzes the oxidation of cholesterol to 25-hydroxycholesterol (25HC). 25HC can inhibit multiple enveloped-virus infections, but the mechanism is largely unknown, and whether 25HC plays an important role in regulating hantavirus remains unexplored. In this study, we show that Hantaan virus (HTNV), the prototype hantavirus, induced CH25H gene in infected cells. Overexpression of CH25H and treatment with 25HC, inhibited HTNV infection, possibly by lowering 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMG-CoA reductase, HMGCR), which inhibits cholesterol biosynthesis. In addition, cholesterol-lowering drugs such as HMGCR-targeting statins have potent hantavirus inhibitory effects. Our results indicate that 25HC and some statins are potential antiviral agents effective against hantavirus infections. This study provides evidence that targeting cholesterol metabolism is promising in developing specific hantavirus antivirals and indicates the possibility of repurposing FDA-approved cholesterol-lowering drug, statins for treating hantavirus infection.</p></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deoxyarbutin targets mitochondria to trigger p53-dependent senescence of glioblastoma cells 脱氧熊果苷靶向线粒体,引发胶质母细胞瘤细胞的 p53 依赖性衰老。
IF 7.1 2区 生物学
Free Radical Biology and Medicine Pub Date : 2024-08-28 DOI: 10.1016/j.freeradbiomed.2024.08.027
{"title":"Deoxyarbutin targets mitochondria to trigger p53-dependent senescence of glioblastoma cells","authors":"","doi":"10.1016/j.freeradbiomed.2024.08.027","DOIUrl":"10.1016/j.freeradbiomed.2024.08.027","url":null,"abstract":"<div><p>Cellular senescence is a natural barrier of the transition from premalignant cells to invasive cancer. Pharmacological induction of senescence has been proposed as a possible anticancer strategy. In this study, we found that deoxyarbutin inhibited the growth of glioblastoma (GBM) cells by inducing cellular senescence, independent of tyrosinase expression. Instead, deoxyarbutin induced mitochondrial oxidative stress and damage. These aberrant mitochondria were key to the p53-dependent senescence of GBM cells. Facilitating autophagy or mitigating mitochondrial oxidative stress both suppressed p53 expression and alleviated cellular senescence induced by deoxyarbutin. Thus, our study reveals that deoxyarbutin induces mitochondrial oxidative stress to trigger the p53-dependent senescence of GBM cells. Importantly, deoxyarbutin treatment resulted in accumulation of p53, induction of cellular senescence, and inhibition of tumor growth in a subcutaneous tumor model of mouse. In conclusion, our study reveals that deoxyarbutin has therapeutic potential for GBM by inducing mitochondrial oxidative stress for p53-dependent senescence of GBM cells.</p></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of vitamin D deficiency on chronic alcoholic liver injury 维生素 D 缺乏对慢性酒精性肝损伤的影响
IF 7.1 2区 生物学
Free Radical Biology and Medicine Pub Date : 2024-08-28 DOI: 10.1016/j.freeradbiomed.2024.08.037
{"title":"Effects of vitamin D deficiency on chronic alcoholic liver injury","authors":"","doi":"10.1016/j.freeradbiomed.2024.08.037","DOIUrl":"10.1016/j.freeradbiomed.2024.08.037","url":null,"abstract":"<div><p>Vitamin D deficiency (VDD) has been found among alcoholics. However, little is known about the effect of VDD on alcoholic liver disease and the molecular mechanisms remain unclear. The aim of the current study was to evaluate whether vitamin D was deficient among patients with alcoholic fatty liver disease (AFLD) and the effect of VDD on chronic alcoholic liver injury and possible molecular mechanisms in mice. Our results found that lower 25-hydroxyvitamin D [25(OH)D] concentrations in patients with AFLD. And further analysis found that 25(OH)D is a protective factor in patients with AFLD. Mice experiments indicated that VDD can alter the composition of gut microbiota, down-regulate the protein levels of intestinal tight junction protein Occludin and E-cadherin, up-regulate the expression of inflammatory cytokines (<em>tnf-α</em>, <em>il-1β</em>, <em>il-6</em>, <em>il-8</em>, <em>ccl2</em>, <em>il-10</em>) in liver and colon tissue. And further exacerbated the protein levels of <em>p65</em>,<em>P-IκB</em>,<em>P-p65</em> in alcoholic liver injury mice. In conclusion, VDD aggravates chronic alcoholic liver injury by activating NF-κB signaling pathway.</p></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glutathione transferase omega 1-1 (GSTO1-1) can effect the inter-cell transfer of cisplatin resistance through the exosomal route 谷胱甘肽转移酶ω1-1(GSTO1-1)可通过外泌体途径实现顺铂抗药性的细胞间转移。
IF 7.1 2区 生物学
Free Radical Biology and Medicine Pub Date : 2024-08-27 DOI: 10.1016/j.freeradbiomed.2024.08.032
{"title":"Glutathione transferase omega 1-1 (GSTO1-1) can effect the inter-cell transfer of cisplatin resistance through the exosomal route","authors":"","doi":"10.1016/j.freeradbiomed.2024.08.032","DOIUrl":"10.1016/j.freeradbiomed.2024.08.032","url":null,"abstract":"<div><p>Glutathione transferase omega-1-1 (GSTO1-1) is a member of the glutathione transferase superfamily (GSTs) involved in the modulation of cell survival, proliferation and metabolism. Increased levels of GSTO1-1 have been associated with cancer progression and chemoresistance in different types of cancer cells, possibly supported by the post-traslational regulation of some major prosurvival pathways regulated by the enzyme. Our data demonstrate for the first time that GSTO1-1 can be released by cancer cells through the exosomal route and transferred to GSTO1-1 knock-out cells, this resulting in an increased resistance against cisplatin toxicity in recipient cells. The use of the exosomal route to transfer the regulatory competences of GSTO1-1 could be a further element supporting its role in neoplastic progression.</p></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142092717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信