MOTS-c attenuates mitochondrial dysfunction induces pyroptosis and cartilage degradation in osteoarthritis via an Nrf2-Dependent Mechanism.

IF 8.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kechi Li, Tao Yang, Feiyu Chen, Chao Lou, Yanlin Chen, Zhenzhong Chen, Lin Ye, Xiaolong Sun, Guoxiang Liu, Chenglong Xie, Jiawei Fang, Xingyu Hu, Ye Zhu, Bin Liu, Dengwei He, Haiwei Ma
{"title":"MOTS-c attenuates mitochondrial dysfunction induces pyroptosis and cartilage degradation in osteoarthritis via an Nrf2-Dependent Mechanism.","authors":"Kechi Li, Tao Yang, Feiyu Chen, Chao Lou, Yanlin Chen, Zhenzhong Chen, Lin Ye, Xiaolong Sun, Guoxiang Liu, Chenglong Xie, Jiawei Fang, Xingyu Hu, Ye Zhu, Bin Liu, Dengwei He, Haiwei Ma","doi":"10.1016/j.freeradbiomed.2025.09.056","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis, a common chronic degenerative disease in the field of orthopedics, is caused by the interaction of mechanical stress, traumatic inflammation, and metabolic imbalance, and this interaction progresses over time. MOTS-c, a mitochondria-derived peptide, exerts pivotal roles in regulating metabolism, anti-inflammation, and antioxidant stress responses. However, current research on the role of MOTS-c in osteoarthritis remains scarce, and its specific mechanism of action remains unclear. Therefore, this study aims to further explore the molecular mechanisms by which MOTS-c regulates osteoarthritis. Exogenous supplementation of MOTS-c improves mitochondrial dysfunction, inhibits the activation of inflammatory bodies and rescues chondrocyte pyroptosis, thereby regulating the metabolic balance of extracellular matrix (ECM). Mechanistically, MOTS-c plays a key role in LPS-induced oxidative stress and chondrocyte pyroptosis through the Nrf2/TXNIP/NLRP3 axis. Our research demonstrates that MOTS-c can not only effectively inhibit the expression of inflammatory factors but also promote the expression of major components of the extracellular matrix (ECM) and suppress the production of matrix metalloproteinases. We validated the in vivo efficacy of MOTS-c by establishing a murine osteoarthritis model. Analysis of imaging and histopathological results revealed that MOTS-c can effectively delay the degeneration of articular cartilage and ameliorate the progression of osteoarthritis. Collectively, our findings uncover the intrinsic regulatory mechanism of MOTS-c in chondrocytes and its potential value in the treatment of osteoarthritis.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2025.09.056","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis, a common chronic degenerative disease in the field of orthopedics, is caused by the interaction of mechanical stress, traumatic inflammation, and metabolic imbalance, and this interaction progresses over time. MOTS-c, a mitochondria-derived peptide, exerts pivotal roles in regulating metabolism, anti-inflammation, and antioxidant stress responses. However, current research on the role of MOTS-c in osteoarthritis remains scarce, and its specific mechanism of action remains unclear. Therefore, this study aims to further explore the molecular mechanisms by which MOTS-c regulates osteoarthritis. Exogenous supplementation of MOTS-c improves mitochondrial dysfunction, inhibits the activation of inflammatory bodies and rescues chondrocyte pyroptosis, thereby regulating the metabolic balance of extracellular matrix (ECM). Mechanistically, MOTS-c plays a key role in LPS-induced oxidative stress and chondrocyte pyroptosis through the Nrf2/TXNIP/NLRP3 axis. Our research demonstrates that MOTS-c can not only effectively inhibit the expression of inflammatory factors but also promote the expression of major components of the extracellular matrix (ECM) and suppress the production of matrix metalloproteinases. We validated the in vivo efficacy of MOTS-c by establishing a murine osteoarthritis model. Analysis of imaging and histopathological results revealed that MOTS-c can effectively delay the degeneration of articular cartilage and ameliorate the progression of osteoarthritis. Collectively, our findings uncover the intrinsic regulatory mechanism of MOTS-c in chondrocytes and its potential value in the treatment of osteoarthritis.

MOTS-c通过nrf2依赖机制减弱骨关节炎中线粒体功能障碍诱导的焦亡和软骨降解。
骨关节炎是骨科领域常见的慢性退行性疾病,是由机械应力、创伤性炎症和代谢不平衡相互作用引起的,这种相互作用随着时间的推移而发展。MOTS-c是一种线粒体来源的肽,在调节代谢、抗炎症和抗氧化应激反应中发挥关键作用。然而,目前关于MOTS-c在骨关节炎中的作用的研究仍然很少,其具体的作用机制尚不清楚。因此,本研究旨在进一步探讨MOTS-c调控骨关节炎的分子机制。外源性补充MOTS-c可改善线粒体功能障碍,抑制炎症体的激活,挽救软骨细胞焦亡,从而调节细胞外基质(ECM)的代谢平衡。在机制上,MOTS-c通过Nrf2/TXNIP/NLRP3轴在lps诱导的氧化应激和软骨细胞热亡中发挥关键作用。我们的研究表明,MOTS-c不仅能有效抑制炎症因子的表达,还能促进细胞外基质(extracellular matrix, ECM)主要成分的表达,抑制基质金属蛋白酶的产生。我们通过建立小鼠骨关节炎模型来验证MOTS-c的体内疗效。影像学和组织病理学结果分析显示,MOTS-c能有效延缓关节软骨退行性变,改善骨关节炎的进展。总之,我们的发现揭示了MOTS-c在软骨细胞中的内在调节机制及其在骨关节炎治疗中的潜在价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信