Food Science and Human Wellness最新文献

筛选
英文 中文
Saikosaponin D improves non-alcoholic fatty liver disease via gut microbiota-bile acid metabolism pathway 柴胡皂苷 D 通过肠道微生物群-胆汁酸代谢途径改善非酒精性脂肪肝
IF 5.6 1区 农林科学
Food Science and Human Wellness Pub Date : 2024-09-01 DOI: 10.26599/FSHW.2022.9250218
{"title":"Saikosaponin D improves non-alcoholic fatty liver disease via gut microbiota-bile acid metabolism pathway","authors":"","doi":"10.26599/FSHW.2022.9250218","DOIUrl":"10.26599/FSHW.2022.9250218","url":null,"abstract":"<div><div>Non-alcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease worldwide. Bupleurum is widely used in the treatment of non-alcoholic fatty liver, and saikosaponin D (SSD) is one of the main active components of Bupleurum. The purpose of this study was to investigate the efficacy of SSD in the treatment of NAFLD and to explore the mechanism of SSD in the improvement of NAFLD based on “gut-liver axis”. Our results showed that SSD dose-dependently alleviated high fat diet-induced weight gain in mice, improved insulin sensitivity, and also reduced liver lipid accumulation and injury-related biomarkers aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Further exploration found that SSD inhibited the mRNA expression levels of farnesoid X receptor (<em>Fxr</em>), small heterodimer partner (<em>Shp</em>), recombinant fibroblast growth factor 15 (<em>Fgf15</em>) and apical sodium dependent bile acid transporter (<em>Asbt</em>) in the intestine, suggesting that SSD improved liver lipid metabolism by inhibiting intestinal FXR signaling. SSD can significantly reduce the gut microbiota associated with bile salt hydrolase (BSH) expression, such as <em>Clostridium</em>. Decreased BSH expression reduced the ratio of unconjugated to conjugated bile acids, thereby inhibiting the intestinal FXR. These data demonstrated that SSD ameliorated NAFLD potentially through the gut microbiota-bile acid-intestinal FXR pathway and suggested that SSD is a promising therapeutic agent for the treatment of NAFLD.</div></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":"13 5","pages":"Pages 2703-2717"},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135372285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tetramethylpyrazine and paeoniflorin combination (TMP-PF) alleviates atherosclerosis progress by reducing hyperlipemia and inhibiting plaque angiogenesis via the NR4A1/VEGFR2 pathway 四甲基吡嗪和芍药苷复方制剂(TMP-PF)通过 NR4A1/VEGFR2 途径降低高脂血症并抑制斑块血管生成,从而缓解动脉粥样硬化的进展
IF 5.6 1区 农林科学
Food Science and Human Wellness Pub Date : 2024-09-01 DOI: 10.26599/FSHW.2022.9250212
{"title":"Tetramethylpyrazine and paeoniflorin combination (TMP-PF) alleviates atherosclerosis progress by reducing hyperlipemia and inhibiting plaque angiogenesis via the NR4A1/VEGFR2 pathway","authors":"","doi":"10.26599/FSHW.2022.9250212","DOIUrl":"10.26599/FSHW.2022.9250212","url":null,"abstract":"<div><div>Atherosclerosis remains a great threat to human health worldwide. Previous studies found that tetramethylpyrazine (TMP) and paeoniflorin (PF) combination (TMP-PF) exerts anti-atherosclerotic effects <em>in vitro</em>. However, whether TMP-PF improves atherosclerosis <em>in vivo</em> needs further exploration. The present study aims to assess the anti-atherosclerotic properties of TMP-PF in ApoE<sup>-/-</sup> mice and explore the related molecule mechanisms. Results showed that TMP and high-dose TMP-PF decreased serum triglyceride and low-density lipoprotein cholesterol levels, suppressed vascular endothelial growth factor receptor 2 (VEGFR2) and nuclear receptor subfamily 4 group A member 1 (NR4A1) expression in aortic tissues, inhibited plaque angiogenesis, reduced plaque areas, and alleviated atherosclerosis in ApoE<sup>-/-</sup> mice. Also, TMP-PF exhibited a better modulation effect than TMP or PF alone. However, NR4A1 agonist abolished the anti-atherosclerotic effects of TMP-PF. In conclusion, TMP-PF was first found to alleviate atherosclerosis progression by reducing hyperlipemia and inhibiting plaque angiogenesis via the NR4A1/VEGFR2 pathway, indicating that TMP-PF had a positive effect on reducing hyperlipemia and attenuating atherosclerosis development.</div></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":"13 5","pages":"Pages 2642-2652"},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135372292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2′-Fucosyllactose alleviate immune checkpoint blockade-associated colitis by reshaping gut microbiota and activating AHR pathway 2′-岩藻糖通过重塑肠道微生物群和激活AHR通路缓解免疫检查点阻断剂相关性结肠炎
IF 5.6 1区 农林科学
Food Science and Human Wellness Pub Date : 2024-09-01 DOI: 10.26599/FSHW.2022.9250205
{"title":"2′-Fucosyllactose alleviate immune checkpoint blockade-associated colitis by reshaping gut microbiota and activating AHR pathway","authors":"","doi":"10.26599/FSHW.2022.9250205","DOIUrl":"10.26599/FSHW.2022.9250205","url":null,"abstract":"<div><div>Immune checkpoint blockade (ICB) therapeutics are highly effective in cancer immunotherapy, but gastrointestinal toxicity limited the application. Intestinal microbiota plays a crucial role in ICB-associated colitis. 2′-Fucosyllactose (2′FL) is most abundance prebiotic in human milk that can reshape gut microbiota and exert immune regulatory effect. The study aimed to determine the effects of 2′FL on ICB-associated colitis and to uncover the mediating mechanism. ICB-associated colitis was induced by the ipilimumab and dextran sulfate sodium. Oral administration of 2′FL (0.6 g/(kg∙day)) ameliorated ICB-induced colitis by enhancing regulatory T cells (Treg) and the M2/M1 ratio of macrophages in colon. 2′FL treatment also increased the expression of tight junction proteins (zonula occludens-1 (ZO-1) and mucin 2 (MUC2)) and antioxidant stress indicators (superoxide dismutase (SOD) and catalase (CAT)). In addition, administration of 2′FL increased the abundance of <em>Bifidobacterium</em> and <em>Lactobacillus</em>, and elevated the levels of microbial metabolites, such as indole-3-lactic acid (ILA), which activated the aryl hydrocarbon receptor ligands (AHR) pathway. The protective effect of 2′FL was abolished upon depletion of gut microbiota, and ILA treatment partially simulated the protective effect of 2′FL. Notably, 2′FL did not exhibit inhibition of antitumor immunity. These findings suggest that 2′FL could serve as a potential protective strategy for ICB-associated colitis by modulating the intestinal microbiota and bacterial metabolites.</div></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":"13 5","pages":"Pages 2543-2561"},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135372443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The metabolic profiling of Chinese yam fermented by Saccharomyces boulardii and the biological activities of its ethanol extract in vitro 布拉氏酵母菌发酵山药的代谢谱分析及其乙醇提取物的体外生物活性
IF 5.6 1区 农林科学
Food Science and Human Wellness Pub Date : 2024-09-01 DOI: 10.26599/FSHW.2022.9250219
{"title":"The metabolic profiling of Chinese yam fermented by Saccharomyces boulardii and the biological activities of its ethanol extract in vitro","authors":"","doi":"10.26599/FSHW.2022.9250219","DOIUrl":"10.26599/FSHW.2022.9250219","url":null,"abstract":"<div><div>Chinese yam (<em>Dioscorea opposita</em> Thunb.), as one of the medicinal and edible homologous plants, is rich in various nutrients and functional factors. In this study, Chinese yam fermented by <em>Saccharomyces boulardii</em> was performed to investigate its bioactive components and metabolic profile. And then, the main bioactive components and biological activities of fermented Chinese yam ethanol extract (FCYE) were evaluated. Results showed that there were 49 up-regulated metabolites and 52 down-regulated metabolites in fermented Chinese yam compared to unfermented Chinese yam. Besides, corresponding metabolic pathways analysis initially revealed that the distribution of bioactive substances was concentrated on alcohol-soluble small molecular substances. Ulteriorly, the total polyphenol content and the total flavonoid content in FCYE were significantly increased, and the corresponding antioxidant and immunomodulatory activities <em>in vitro</em> were also significantly enhanced. Our study provided a new reference for the comprehensive utilization of Chinese yam and laid a theoretical foundation for the development and application of natural probiotic-fermented products.</div></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":"13 5","pages":"Pages 2718-2726"},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135373412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into the enhancement of food flavor perception: strategies, mechanism and emulsion applications 洞察食品风味感知的增强:策略、机制和乳液应用
IF 5.6 1区 农林科学
Food Science and Human Wellness Pub Date : 2024-09-01 DOI: 10.26599/FSHW.2022.9250199
{"title":"Insights into the enhancement of food flavor perception: strategies, mechanism and emulsion applications","authors":"","doi":"10.26599/FSHW.2022.9250199","DOIUrl":"10.26599/FSHW.2022.9250199","url":null,"abstract":"<div><div>The core drivers of the modern food industry are meeting consumer demand for tasty and healthy foods. The application of food flavor perception enhancement can help to achieve the goals of salt- and sugar-reduction, without compromising the sensory quality of the original food, and this has attracted increasing research attention. The analysis of bibliometric results from 2002 to 2022 reveals that present flavor perception enhancement strategies (changing ingredient formulations, adding salt/sugar substitutes, emulsion delivery systems) are mainly carry out based on sweetness, saltiness and umami. Emulsion systems is becoming a novel research foci and development trends of international food flavor perception-enhancement research. The structured design of food emulsions, by using interface engineering technology, can effectively control, or enhance the release of flavor substances. Thus, this review systematically summarizes strategies, the application of emulsion systems and the mechanisms of action of food flavor perception-enhancement technologies, based on odor-taste cross-modal interaction (OTCMI), to provide insights into the further structural design and application of emulsion systems in this field.</div></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":"13 5","pages":"Pages 2410-2424"},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135373425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maternal dietary patterns associated with bone density in Chinese lactating women and infants at 6 months postpartum: a prospective study using data from 2018–2019 母亲膳食模式与中国哺乳期妇女和产后6个月婴儿骨密度的相关性:利用2018-2019年数据进行的前瞻性研究
IF 5.6 1区 农林科学
Food Science and Human Wellness Pub Date : 2024-09-01 DOI: 10.26599/FSHW.2022.9250214
{"title":"Maternal dietary patterns associated with bone density in Chinese lactating women and infants at 6 months postpartum: a prospective study using data from 2018–2019","authors":"","doi":"10.26599/FSHW.2022.9250214","DOIUrl":"10.26599/FSHW.2022.9250214","url":null,"abstract":"<div><div>This cohort study was designed to explore the relationship between maternal dietary patterns (DPs) and bone health in Chinese lactating mothers and infants. We recruited 150 lactating women at 1-month postpartum. The estimated bone mineral density (eBMD) of subjects’ calcanei and the information on dietary intake were collected. After 5-month follow-up, the eBMD of mothers and their infants were measured again. Factor analysis was applied to determine maternal DPs. General linear models were used to evaluate the association between maternal DPs and maternal eBMD loss or infants’ eBMD. With all potential covariates adjusted, Factor 2 (high intake of whole grains, tubers, mixed beans, soybeans and soybean products, seaweeds, and nuts) showed a positive association with the changes of maternal eBMD (<em>β</em> = 0.16, 95 % CI: 0.005, 0.310). Factor 3 (high intake of soft drinks, fried foods, and puffed foods) was inversely correlated with the changes of maternal eBMD (<em>β</em> = –0. 22, 95 % CI: -0.44, 0.00). The changes of maternal eBMD were positively associated with 6-month infants’ eBMD (<em>β</em> = 0.34, 95 % CI: 0.017, 0.652). In conclusion, Factor 2 might contribute to the maintenance of eBMD in lactating women, while Factor 3 could exacerbate maternal eBMD loss. Additionally, the changes of maternal eBMD presented a positive correlation with 6-month infants’ eBMD.</div></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":"13 5","pages":"Pages 2668-2676"},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135372288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of a xylitol-casein complex on insulin resistance and gut microbiota composition in high-fat-diet + streptozotocin-induced type 2 diabetes mellitus mice 木糖醇-酪蛋白复合物对高脂饮食+链脲佐菌素诱导的 2 型糖尿病小鼠胰岛素抵抗和肠道微生物群组成的影响
IF 5.6 1区 农林科学
Food Science and Human Wellness Pub Date : 2024-09-01 DOI: 10.26599/FSHW.2022.9250221
{"title":"Effects of a xylitol-casein complex on insulin resistance and gut microbiota composition in high-fat-diet + streptozotocin-induced type 2 diabetes mellitus mice","authors":"","doi":"10.26599/FSHW.2022.9250221","DOIUrl":"10.26599/FSHW.2022.9250221","url":null,"abstract":"<div><div>This study investigated the effects of a xylitol-casein non-covalent complex (XC) on parameters related to type 2 diabetes mellitus (T2DM), in addition to related changes in gut microbiome composition and functions. High-fat-diet (HFD) + streptozotocin (STZ)-induced T2DM mice were treated with xylitol (XY), casein (CN), and XC, after which fecal samples were collected for gut microbiota composition and diversity analyses based on 16S rRNA high-throughput sequencing and multivariate statistics. XC decreased body weight and improved glucose tolerance, insulin sensitivity, pancreas impairment, blood lipid levels, and liver function in T2DM mice compared to XY- and CN-treated mice. Furthermore, XC modulated the <em>α</em>-diversity, <em>β</em>-diversity and gut microbiota composition. Based on Spearman’s correlation analysis, the relative abundances of <em>Alistipes</em>, <em>Bacteroides</em>, and <em>Faecalibaculum</em> were positively correlated and those of <em>Akkermansia</em>, <em>Lactobacillus</em>, <em>Bifidobacterium</em>, and <em>Turicibacter</em> were negatively correlated with the phenotypes related to the improvement of T2DM. In conclusion, we found that XC alleviated insulin resistance by restoring the gut microbiota of T2DM mice. Our results provide strong evidence for the beneficial effects of XC on T2DM and motivation for further investigation in animal models and, eventually, human trials.</div></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":"13 5","pages":"Pages 2741-2753"},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135372433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of glucose metabolism in middle-aged mice on a high-fat diet by whole-grain highland barley is related to low methionine levels 全麦高原大麦对高脂饮食中年小鼠糖代谢的改善与低蛋氨酸水平有关
IF 5.6 1区 农林科学
Food Science and Human Wellness Pub Date : 2024-09-01 DOI: 10.26599/FSHW.2022.9250235
{"title":"Improvement of glucose metabolism in middle-aged mice on a high-fat diet by whole-grain highland barley is related to low methionine levels","authors":"","doi":"10.26599/FSHW.2022.9250235","DOIUrl":"10.26599/FSHW.2022.9250235","url":null,"abstract":"<div><div>Methionine restriction (MR) is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body, especially in the middle-aged and elderly population. However, the high methionine content of meat products makes this dietary strategy impossible to combine with protein supplementation and MR. Highland barley (HB), a low-methionine cereal, not only provides the body with protein but also has improved glucose metabolism and antioxidant and anti-inflammatory properties. Therefore, this study evaluated the feasibility of HB as a source of methionine-restricted dietary protein and the potential mechanisms. Middle-aged C57BL/6J mice were fed a control diet (CON), a high-fat diet (HFD), a whole-grain HB high-fat diet (HBHF), or a HBHF + methionine diet (HBHFmet) for 25 weeks. The results showed that the HBHF could keep the body weight, fasting glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), blood lipids, inflammation, and oxidative stress of HFD mice at normal levels. Compared with the HFD groups, HBHF inhibited pancreatic cell apoptosis and improved insulin secretion while improving hepatic and skeletal muscle glucose metabolism. However, these efficacies were attenuated in HBHFmet group mice. These findings suggest that HBHF has an MR strategy.</div></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":"13 5","pages":"Pages 2906-2916"},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135373293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of salt and rice flour concentration on microbial diversity and the quality of sour meat, a Chinese traditional meat 盐和米粉浓度对中国传统肉类--酸肉的微生物多样性和质量的影响
IF 5.6 1区 农林科学
Food Science and Human Wellness Pub Date : 2024-09-01 DOI: 10.26599/FSHW.2022.9250226
{"title":"Effects of salt and rice flour concentration on microbial diversity and the quality of sour meat, a Chinese traditional meat","authors":"","doi":"10.26599/FSHW.2022.9250226","DOIUrl":"10.26599/FSHW.2022.9250226","url":null,"abstract":"<div><div>This study investigated the effects of salt (3 % and 6 %, <em>m/m</em>) and rice flour (10 % and 20 %, <em>m/m</em>) addition in sour meat, a traditional Chinese fermented meat. It was found that salt has greater effect than rice flour addition in spontaneous fermentation. Low-salt groups had lower pH and higher titratable total acid. In the low-salt groups, the dominant genera were <em>Lactobacillus</em> and <em>Lactococcus</em>, whereas <em>Staphylococcus</em>, <em>Weissella</em>, and <em>Tetragenococcus</em> were dominant in the high-salt groups. Higher total free amino acids and essential amino acids, organic acids, hexanoic acid ethyl ester and octanoic acid ethyl ester were found in the low-salt groups. The RDA analysis revealed that <em>Lactococcus</em> was closely related to product quality, with the S3F10 (3 % salt and 10 % rice flour) group outperforming the others in the sensory evaluation. Therefore, 3 % salt and 10 % rice flour were considered more appropriate for the production of healthy and tasty fermented sour meats.</div></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":"13 5","pages":"Pages 2790-2798"},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135373420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulforaphane ameliorates non-alcoholic steatohepatitis by KLF4-mediated macrophage M2 polarization 绿藻素通过 KLF4 介导的巨噬细胞 M2 极化改善非酒精性脂肪性肝炎
IF 5.6 1区 农林科学
Food Science and Human Wellness Pub Date : 2024-09-01 DOI: 10.26599/FSHW.2022.9250220
{"title":"Sulforaphane ameliorates non-alcoholic steatohepatitis by KLF4-mediated macrophage M2 polarization","authors":"","doi":"10.26599/FSHW.2022.9250220","DOIUrl":"10.26599/FSHW.2022.9250220","url":null,"abstract":"<div><div>Non-alcoholic fatty liver disease (NAFLD) has become a global issue and a severe threat to public health. However, to date, no approved therapeutic drugs have been developed. Dietary interventions with natural products have shown promise in preventing and treating NAFLD. Sulforaphane (SFN) is a phytocompound with antioxidant and anti-inflammatory properties, and previous research has demonstrated that SFN can ameliorate hepatic lipid accumulation and inflammation. However, the molecular mechanisms underlying these beneficial effects remain unclear. In this study, we confirmed the protective effects of SFN on excessive lipid accumulation and inflammatory injury in a high-fat, high-fructose diet-induced non-alcoholic steatohepatitis (NASH) mouse model. We found that SFN attenuates the inflammatory injury in a macrophage cell line and the liver of NASH mice, owing to the promotion of M1-type macrophage polarization toward the M2-type and the regulation of inflammatory mediators. Further analysis demonstrated that this SFN-induced macrophage M2-type polarization occurs in a Krüppel-like factor 4 (KLF4)-dependent manner. In summary, we uncovered a new mechanism of action underlying SFN activity and provide evidence that dietary intervention with SFN might be protective against NASH.</div></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":"13 5","pages":"Pages 2727-2740"},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135373424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信