{"title":"Causal Artificial Intelligence Models of Food Quality Data","authors":"Ž. Kurtanjek","doi":"10.17113/ftb.62.01.24.8301","DOIUrl":"https://doi.org/10.17113/ftb.62.01.24.8301","url":null,"abstract":"Research background. The motivation of this study is to emphasize the importance of artificial intelligence (AI) and causality modelling of food quality and analysis with “big data”. AI with structural causal modelling (SCM), based on Bayes networks and deep learning, enables the integration of theoretical field knowledge in food technology with process production, physical-chemical analytics, and consumer organoleptic assessments. Food products have complex nature and data are highly dimensional, with intricate interrelations (correlations) and are difficult to relate to consumer sensory perception of food quality. Standard regression modelling techniques such as multiple ordinary least squares (OLS) and partial least squares (PLS) are effectively applied for the prediction by linear interpolations of observed data under cross-sectional stationary conditions. Upgrading linear regression models by machine learning (ML) accounts for nonlinear relations and reveals functional patterns, but is prone to confounding and fails predictions under unobserved nonstationary conditions. Confounding of data variables is the main obstacle to applications of the regression models in food innovations under previously untrained conditions. Hence, this manuscript focuses on applying causal graphical models with Bayes networks to infer causal relationships and intervention effects between process variables and consumer sensory assessment of food quality. \u0000Experimental approach. This study is based on the literature available data on the process of wheat bread baking quality, consumer sensory quality assessments of fermented milk products, and professional wine tasting data. The data for wheat baking quality are regularized by the least absolute shrinkage and selection operator (LASSO elastic net). Applied is Bayes statistics for evaluation of the model joint probability function for inferring the network structure and parameters. The obtained SCM models are presented as directed acyclic graphs (DAG). D-separation criteria is applied to block confounding effects in estimating direct and total causal effects of process variables and consumer perception on food quality. Probability distributions of causal effects of the intervention of individual process variables on quality are presented as partial dependency plots determined by Bayes neural networks. In the case of wine quality causality, the total causal effects determined by SCM models are positively validated by the double machine learning (DML) algorithm.\u0000Results and conclusions. Analysed is the data set of 45 continuous variables corresponding to different chemical, physical and biochemical variables of wheat properties from seven Croatian cultivars during two years of controlled cultivation. LASSO regularization of the data set yielded the ten key predictors, accounting for 98 % variance of the baking quality data. Based on the key variables derived is the quality predictive random forest model with 75 % cross","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139448553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of Ultrasound-Assisted Microwave Encapsulation of Peanut Oil in Protein-Polysaccharide Complex","authors":"Sachin S. Bhuva, N. Dhamsaniya, Gopal V. Marviya","doi":"10.17113/ftb.62.01.24.8206","DOIUrl":"https://doi.org/10.17113/ftb.62.01.24.8206","url":null,"abstract":"Research background. Peanut oil (Arachis hypogaea L.) is a rich source of unsaturated fatty acids. Consumption of peanut oil has been reported to have biological effects on human health. Unsaturated, especially poly-unsaturated fatty acids (PUFA), found in peanut oil are highly susceptible to oxidation, resulting in the formation of noxious compounds during processing and storage. The aim was to prevent peanut oil PUFA from oxidation by encapsulation in a protein-polysaccharide complex using the microwave drying process.\u0000Experimental approach. The combination effect of corn starch (CS) and whey protein isolate (WPI) was evaluated for ultrasound assisted microwave encapsulation of peanut oil to prevent oxidative degradation. The effect of independent parameters, viz. CS:WPI ratio (1:1 to 5:1), lecithin (0–5 %), ultrasonication (0–10 min) and microwave power (150–750 W) on encapsulation of peanut oil was evaluated using response surface methodology (RSM). The process responses viz., viscosity and stability of emulsion, encapsulation efficiency, peroxides value, antioxidant activity, free fatty acids (FFA), moisture, angle of repose and flowability (Hausner ratio, HR and Carr’s Index, CI) were recorded and analysed to optimize the independent variables.\u0000Results and conclusions. The viscosity of all the emulsions prepared for encapsulation by ultrasonication ranged 6.90 to 14.40 cP having more than 90 % stability over 7 days. The observed encapsulation efficiency was 21.82–74.25 % for encapsulated peanut oil. Encapsulation efficiency was significantly affected by CS:WPI ratio and ultrasonication. The peroxide value, antioxidant activity and FFA ranged between 1.789–3.723 mg/kg oil, 19.81–72.62 % and 0.042–0.127 %, respectively. Physical properties such as moisture content, angle of repose, HR and CI was observed 1.94–8.70 % (w.b.), 46.5–58.3⁰, 1.117–1.246 and 10.48–22.14 %, respectively. The physical properties were significantly affected by surface characteristics of the encapsulates. The higher efficiency (74.25 %) of the peanut oil encapsulation could be achieved at optimized condition of 1.25 CS:WPI ratio, 0.25 % lecithin, 9.99 min ultrasonication and 355.41 W microwave power.\u0000Novelty and scientific contribution. The findings contribute to the fields of food science and technology by offering a practical approach to preserving the nutritional quality of peanut oil and enhancing its stability by encapsulation, thereby promoting its potential health benefits for consumers and applications in various industries such as dairy and bakery.","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139448783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paulyne Tolentino Anselmo, Beatriz Cardoso Sabino, Carla Prado Rosolém, Márcia Simoni de Melo Rodrigues, J. R. Silva, K. B. Guergoletto, T. C. Pimentel, Carina Moro Benis, W. Spinosa, Giselle Aparecida Nobre Costa
{"title":"Açai Flan, A Functional Food with Lacticaseibacillus rhamnosus HN001 Probiotic: Physicochemical Characteristics, Probiotic Survival, Sensory Acceptance and Consumer Perception","authors":"Paulyne Tolentino Anselmo, Beatriz Cardoso Sabino, Carla Prado Rosolém, Márcia Simoni de Melo Rodrigues, J. R. Silva, K. B. Guergoletto, T. C. Pimentel, Carina Moro Benis, W. Spinosa, Giselle Aparecida Nobre Costa","doi":"10.17113/ftb.62.01.24.8208","DOIUrl":"https://doi.org/10.17113/ftb.62.01.24.8208","url":null,"abstract":"Research background. Açaí berry is rich in antioxidant compounds, therefore, it is closely associated with beneficial effects on health. In this research we aimed to evaluate the potential of using L. rhamnosus HN001 as probiotic culture on açai flan.\u0000Experimental approach. The flan was evaluated for chemical composition, physicochemical and microbiological characteristics, and sensory acceptance during refrigerated storage (5 ºC/42 days). Furthermore, the consumer perception of the product was evaluated using word association presenting to the consumers a photo of the product added or not with the ingredients used and information about the product. \u0000Results and conclusions. The flan presented suitable chemical composition, mainly carbohydrates and proteins, probiotic viability reached 8 log CFU/g in the product and 4 log CFU/g after gastrointestinal simulation, typical açai coloration, significant antioxidant activity, and high sensory acceptance. The information about the ingredients and characteristics of the products increased the healthiness and positive feelings of the consumers about the product.\u0000Novelty and scientific contribution. Açaí flan has proven to be a suitable carrier for L. rhamnosus HN001 as a probiotic culture, further enhancing the characteristic beneficial properties of the fruit. Therefore, combining this information with marketing strategies that inform consumers about the benefits of the product can further improve its acceptance. As far as we know, this is the first study involving açaí flan with added probiotic culture.","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139448492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Putrescine Upregulates Melanogenesis Through Modulation of MITF Transcription Factor in B16F1 Mouse Melanoma Cells","authors":"Natchanok Talapphet, Moon-Moo Kim","doi":"10.17113/ftb.62.01.24.8120","DOIUrl":"https://doi.org/10.17113/ftb.62.01.24.8120","url":null,"abstract":"Research background. Aging is a biochemical, metabolic, and genetic physiological phenomenon. The suppression of melanin biosynthesis, evident in the graying of hair, is a hallmark of aging resulting from translation failure, reduced enzyme activity, and cellular senescence. Putrescine, the smallest member of the polyamine family and an organic chemical, is present in living mammalian cells, playing a crucial role in regulating skin melanogenesis. Therefore, the purpose of this study is to explore the effect of putrescine on the signaling pathways of melanogenesis in melanoma cells.\u0000Experimental approach. Putrescine was studied on the melanin production capacity was examined through a tyrosinase activity assay. To assess the cell viability of B16F1 cells exposed to putrescine, an MTT assay was performed. The impact of putrescine on melanin synthesis in the presence of H2O2 was evaluated using various in vitro assays in B16F1 cells. The effect of putrescine on melanin production in B16F1 cells was achieved through a dedicated melanin production assay. Gene expression analysis was conducted using RT-PCR. Furthermore, the impact of putrescine on the expression of proteins related to melanin production in H2O2-treated cells was examined through immunofluorescence and western blot analysis. \u0000Results and conclusions. Putrescine increased tyrosinase activity and demonstrated non-cytotoxicity in B16F1 cells. Furthermore, putrescine effectively scavenged H2O2, as evidenced by the reduction in intracellular H2O2 levels in DCFH-DA analysis, and promoted melanin production in living cells. The stimulation of melanogenesis by putrescine was attributed to the elevated expression of Mitf, Tyr, Trp-1, and Trp-2 genes. Immunofluorescence investigations revealed that putrescine enhanced the expression of proteins associated with melanogenesis and upregulated TYR, TRP-1, and TRP-2 via the MITF transcription factor and increased the expression of MSRA and MSRB in H2O2-treated cells, thereby effectively promoting melanogenesis. These findings suggest that putrescine may be utilized to stimulate melanin synthesis.\u0000Novelty and scientific contribution. Putrescine could be solely used as a cosmetic agent to prevent premature graying of hair.","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139453178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enrique Barbosa-Martín, E. Sauri-Duch, L. Chel-Guerrero, L. Cuevas-Glory, V. Moo-Huchin, D. Betancur-Ancona
{"title":"Synthesis of Pyrodextrins and Enzymatically Resistant Maltodextrins from Makal (Xanthosoma yucatenensis) Starch","authors":"Enrique Barbosa-Martín, E. Sauri-Duch, L. Chel-Guerrero, L. Cuevas-Glory, V. Moo-Huchin, D. Betancur-Ancona","doi":"10.17113/ftb.62.01.24.8163","DOIUrl":"https://doi.org/10.17113/ftb.62.01.24.8163","url":null,"abstract":"Research background. Enzymatically resistant maltodextrins (ERM) are a resistant starch (RS) type 4, synthesized from native starch. They are obtained through sequential application of two processes: pyrodextrinization (PDX), which produces pyrodextrins, and complementary hydrolysis (CH), which generates ERM. These processes produce atypical bonds and confer characteristics similar to dietary fiber to pyrodextrins and ERM, such as resistance to digestion. The objective of this work was to obtain and evaluate some physicochemical characteristics of pyrodextrins and ERM produced from native starch isolated from makal (Xanthosoma yucatanense) tubers.\u0000Experimental approach. PDX and CH were performed by applying factorial designs. For PDX, factors and their levels were starch concentration/2.2 M HCl ratio (80/1 and 160/1 m/V), temperature (90 and 110 °C), and reaction time (1 and 3 h); while for CH were α-amylase-pyrodextrin concentration (0.5 and 1 µL/mL) and reaction time (10 and 30 min). The physicochemical profile included determination of RS content, estimation of color change (ΔE), microscopy, and determination of dextrose equivalents (DE). \u0000Results and conclusions. The best factorial treatment for PDX was at the 160:1 m/V, 90 °C and 3 h levels since it presented the highest RS content (84.73 %) and a lowest ΔE (3.742). Due to its low DE (13.89 %), increased RS (90.73 %), and low ΔE (4.24), ERM resulting from CH with the 0.5 µL/mL α-amylase pyrodextrin concentration and 10 min levels was selected as the best treatment.\u0000Novelty and scientific contribution. Results show that pyrodextrins and ERM obtained from makal can be used as ingredients for functional foods development, due to their high proportion of non-digestible material and low browning degree.","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139390673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Flavourzyme and Alkaline Protease Treatment on Structure and Allergenicity of Peanut Allergen Ara h 1","authors":"Erlian Shu, Shuo Wang, Xiangxiang Kong, Xiaodong Sun, Qiaoling Yang, Qin Chen, B. Niu","doi":"10.17113/ftb.62.01.24.8064","DOIUrl":"https://doi.org/10.17113/ftb.62.01.24.8064","url":null,"abstract":"Research background. Peanut allergy poses a significant threat to human health due to the elevated risk of long-term morbidity at low doses. Modifying protein structure to influence sensitization is a popular topic. \u0000Experimental approach. In this study, the purified peanut allergen Ara h 1 was enzymatically hydrolysed using flavorzyme, alkaline protease or a combination of both. The binding ability of Ara h 1 to antibodies, and gene expression and secretion levels of the pro-inflammatory factors IL-5 and IL-6 in Caco-2 cells was measured. Changes in the secondary and tertiary structures before and after treatment with Ara h 1 were carried out by circular dichroism and SDS-PAGE.\u0000Results and conclusions. The results indicated a reduction in the allergenicity and pro-inflammatory ability of Ara h 1. The evaluation reveals that the flavorzyme and alkaline protease treatments caused particle shortening and aggregation. The fluorescence emission peak was enhanced, increasing by 3.4-fold upon combined treatment with both proteases. Additionally, the secondary structure underwent changes, and the hydrophobicity also increased (8.95-fold upon combined treatment). \u0000Novelty and scientific contribution. These findings provide an effective theoretical basis for developing a new method of peanut desensitization and partially uncovering the mechanism of peanut sensitization.","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139389900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andreja Leboš Pavunc, Lenkica Penava, Nina Čuljak, Martina Banić, Jasna Novak, Katarina Butorac, Marijana Ceilinger, Jelena Miličević, Danijela Čukelj, Jagoda Šušković, Blaženka Kos
{"title":"Evaluation of the Probiotic Properties of <i>Lacticaseibacillus casei</i> 431<sup>®</sup> Isolated from Food for Special Medical Purposes<sup>§</sup>.","authors":"Andreja Leboš Pavunc, Lenkica Penava, Nina Čuljak, Martina Banić, Jasna Novak, Katarina Butorac, Marijana Ceilinger, Jelena Miličević, Danijela Čukelj, Jagoda Šušković, Blaženka Kos","doi":"10.17113/ftb.61.04.23.8045","DOIUrl":"10.17113/ftb.61.04.23.8045","url":null,"abstract":"<p><strong>Research background: </strong>Increasing awareness of the importance of nutrition in health promotion and disease prevention has driven to the development of foods for special medical purposes (FSMPs). In this study, the probiotic strain <i>Lacticaseibacillus paracasei</i> ssp. <i>paracasei</i> (<i>Lacticaseibacillus casei</i> 431<sup>®</sup>) was incorporated into FSMPs to develop an innovative product. The aim was to investigate the influence of the FSMP matrix on the specific probiotic properties of <i>L. casei</i> 431<sup>®</sup> <i>in vitro</i>.</p><p><strong>Experimental approach: </strong>A series of <i>in vitro</i> experiments were performed as part of the probiotic approach. After evaluation of antibiotic susceptibility profiles, functional properties such as survival under simulated gastrointestinal tract (GIT) conditions, bile salt deconjugation activities, cholesterol assimilation, antagonistic activity against spoilage bacteria and adhesion to Caco-2 cell line monolayers and extracellular matrix proteins were investigated.</p><p><strong>Results and conclusions: </strong>The <i>L. casei</i> 431<sup>®</sup> strain, both the lyophilised strain and the strain isolated from the FSMP matrix, effectively survived the simulated adverse gastrointestinal conditions without significant effects of the food matrix. The effect of the FSMP matrix on the deconjugation activity of the bile salts of <i>L. casei</i> 431<sup>®</sup> was minimal; however, cholesterol assimilation was increased by 16.4 %. <i>L. casei</i> 431<sup>®</sup> had antibacterial activity against related lactic acid bacteria regardless of whether it was used in FSMPs or not. Conversely, the probiotic strain isolated from FSMP matrix had significantly higher inhibitory activity against six potential pathogens than the lyophilised culture. The autoaggregation ability of the <i>L. casei</i> 431<sup>®</sup> cells was not affected by the FSMP matrix. The adhesion of <i>L. casei</i> 431<sup>®</sup> bacterial cells to the extracellular matrix proteins was reduced after treatment with proteinase K, with the highest adhesion observed to laminin. The adhesion of <i>L. casei</i> 431<sup>®</sup> reduced the binding of <i>E. coli</i> 3014 by 1.81 log units and the binding of <i>S</i>. Typhimurium FP1 to Caco-2 cell lines by 1.85 log units, suggesting the potential for competitive exclusion of these pathogens.</p><p><strong>Novelty and scientific contribution: </strong>The results support the positive effect of the FSMP matrix on the specific probiotic properties of <i>L. casei</i> 431<sup>®</sup>, such as antibacterial activity, bile salt deconjugation and cholesterol assimilation, while the incorporation of this probiotic strain adds functional value to the FSMPs. The synergistic effect achieved by the joint application of <i>L. casei</i> 431<sup>®</sup> and innovative FSMP matrix contributed to the development of the novel formulation of an improved functional food product with ad","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10775782/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68240879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Note from Guest Editors.","authors":"Draženka Komes, Ivana Rumora Samarin","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10775788/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nataša Šekuljica, Sonja Jakovetić Tanasković, Jelena Mijalković, Milica Simović, Neda Pavlović, Nikola Đorđević, Alina Culetu, Ivana Gazikalović, Nevena Luković, Jelena Bakrač, Zorica Knežević-Jugović
{"title":"Xylanase Production by Solid-State Fermentation for the Extraction of Xylooligosaccharides from Soybean Hulls<sup>§</sup>.","authors":"Nataša Šekuljica, Sonja Jakovetić Tanasković, Jelena Mijalković, Milica Simović, Neda Pavlović, Nikola Đorđević, Alina Culetu, Ivana Gazikalović, Nevena Luković, Jelena Bakrač, Zorica Knežević-Jugović","doi":"10.17113/ftb.61.04.23.8073","DOIUrl":"10.17113/ftb.61.04.23.8073","url":null,"abstract":"<p><strong>Research background: </strong>The development of a novel process for the production of xylooligosaccharides (XOS) based on the 4R concept is made possible by the integration of numerous techniques, especially enzymatic modification together with the physical pretreatment of renewable materials. This study aims to integrate the use of agricultural wastes for the production of xylanase by a new strain of <i>Penicillium</i> sp. and value-added products, XOS.</p><p><strong>Experimental approach: </strong>For the production of xylanase, a solid-state fermentation was performed using wheat bran as substrate. To obtain the most active crude extract of xylanase, the time frame of cultivation was first adjusted. Then, the downstream process for xylanase purification was developed by combining different membrane separation units with size exclusion chromatography. Further characterisation included determination of the optimal pH and temperature, determination of the molecular mass of the purified xylanase and analysis of kinetic parameters. Subsequently, the hydrolytic ability of the partially purified xylanase in the hydrolysis of alkali-extracted hemicellulose from soybean hulls was investigated.</p><p><strong>Results and conclusions: </strong>Our results show that <i>Penicillium rubens</i> produced extracellular xylanase at a yield of 21 U/g during solid-state fermentation. Using two ultrafiltration membranes of 10 and 3 kDa in combination with size exclusion chromatography, a yield of 49 % and 13-fold purification of xylanase was achieved. The purified xylanase (35 kDa) cleaved linear bonds β-(1→4) in beechwood xylan at a maximum rate of 0.64 μmol/(min·mg) and a Michaelis constant of 44 mg/mL. At pH=6 and 45 °C, the purified xylanase showed its maximum activity. The xylanase produced showed a high ability to hydrolyse the hemicellulose fraction isolated from soybean hulls, as confirmed by thin-layer chromatography. In the hydrothermally pretreated hemicellulose hydrolysate, the content of XOS with different degrees of polymerisation was detected, while in the non-pretreated hemicellulose hydrolysate, the content of xylotriose and glucose was confirmed.</p><p><strong>Novelty and scientific contribution: </strong>Future research focusing on the creation of new enzymatic pathways for use in processes to convert renewable materials into value-added products can draw on our findings.</p>","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10775786/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49644291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Josipa Lisičar Vukušić, Thomas Millenautzki, Leon Reichert, Abdechafik Mokhlis Saaid, Lothar Müller, Leonardo Clavijo, Jendrik Hof, Marek Mösche, Stéphan Barbe
{"title":"Conversion of Problematic Winery Waste into Valuable Substrate for Baker's Yeast Production and Solid Biofuel: A Circular Economy Approach<sup>§</sup>.","authors":"Josipa Lisičar Vukušić, Thomas Millenautzki, Leon Reichert, Abdechafik Mokhlis Saaid, Lothar Müller, Leonardo Clavijo, Jendrik Hof, Marek Mösche, Stéphan Barbe","doi":"10.17113/ftb.61.04.23.8000","DOIUrl":"10.17113/ftb.61.04.23.8000","url":null,"abstract":"<p><strong>Research background: </strong>Wine production, which is considered a major sector in food industry, often involves the use of a large amount of resources. Moreover, wine making generates a large amount of grape pomace, which is generally used for low-value applications such as fertiliser and animal feed. The aim of the present research is to explore the possibility of improving the overall sustainability of traditional winemaking.</p><p><strong>Experimental approach: </strong>A zero-waste process was developed. It includes the production of white wine and the substantial valorisation of grape pomace, which is converted into solid biofuel, tartaric acid and concentrated grape extract as feedstock for industrial baker's yeast production.</p><p><strong>Results and conclusions: </strong>We estimate that a significant surplus of renewable energy of approx. 3 MJ/kg processed grapes can be obtained during this conversion. The suitability of grape extract as a potential substrate for industrial baker's yeast production was evaluated and the feasibility of a partial replacement of molasses (up to 30 %) was demonstrated.</p><p><strong>Novelty and scientific contribution: </strong>We present a circular economy approach for the conversion of winery biowaste into high-value resources such as feedstock and solid biofuel.</p>","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10775785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42780567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}