Fluids最新文献

筛选
英文 中文
Rendering Maxwell Equations into the Compressible Inviscid Fluid Dynamics Form 将麦克斯韦方程组转换为可压缩无粘流体动力学形式
Fluids Pub Date : 2023-10-26 DOI: 10.3390/fluids8110284
Peter Vadasz
{"title":"Rendering Maxwell Equations into the Compressible Inviscid Fluid Dynamics Form","authors":"Peter Vadasz","doi":"10.3390/fluids8110284","DOIUrl":"https://doi.org/10.3390/fluids8110284","url":null,"abstract":"Maxwell equations governing electromagnetic effects are being shown to be equivalent to the compressible inviscid Navier–Stokes equations applicable in fluid dynamics and representing conservation of mass and linear momentum. The latter applies subject to a generalized Beltrami condition to be satisfied by the magnetic field. This equivalence indicates that the compressible inviscid Navier–Stokes equations are Lorentz invariant as they derive directly from the Lorentz-invariant Maxwell equations subject to the same Beltrami condition, provided the pressure wave propagates at the speed of light, i.e., vo=co. In addition, the derivation and results provide support for the claim that electromagnetic potentials have physical significance as demonstrated by Aharonov–Bohm effect, and are not only a convenient mathematical formulation.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134905992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Settling Flow Details in the Flash Smelting Furnace—A CFD-DEM Simulation Study 闪速熔炼炉沉降流程细节CFD-DEM模拟研究
Fluids Pub Date : 2023-10-23 DOI: 10.3390/fluids8100283
Jani-Petteri Jylhä, Ari Jokilaakso
{"title":"Settling Flow Details in the Flash Smelting Furnace—A CFD-DEM Simulation Study","authors":"Jani-Petteri Jylhä, Ari Jokilaakso","doi":"10.3390/fluids8100283","DOIUrl":"https://doi.org/10.3390/fluids8100283","url":null,"abstract":"The flash smelting furnace has previously been simulated using computational fluid dynamics (CFD). A new approach is to combine CFD and the discrete element method (DEM) for more detailed simulations of the different phenomena that occur as copper matte droplets settle through a slag layer. One of the most important phenomena found is the formation of a channeling flow which carries matte droplets faster through the slag. However, such phenomena cannot be directly observed in the flash smelting furnace settler due to the extreme temperatures of the opaque molten slag inside the furnace, therefore alternative methods are required for validating the phenomenon. In this work, the simulated channeling flow is validated with a sphere–oil model. The phenomenon was similar in all of the studied cases, although in the experimental setup the spheres settled faster in the oil model than in the simulations. The differences were most likely caused by the cohesion of the spheres and slight differences in the properties provided by the manufacturer and real properties for the oil and the spheres, and by the fact that simulation ignores surface tension and changing air–oil and water–oil interfaces.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135366752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Detailed Numerical Study on Aerodynamic Interactions of Tandem Wheels on a Generic Vehicle 通用车辆串联车轮气动相互作用的详细数值研究
Fluids Pub Date : 2023-10-20 DOI: 10.3390/fluids8100281
Radoje Radovic, Fatemeh Salehi, Sammy Diasinos
{"title":"A Detailed Numerical Study on Aerodynamic Interactions of Tandem Wheels on a Generic Vehicle","authors":"Radoje Radovic, Fatemeh Salehi, Sammy Diasinos","doi":"10.3390/fluids8100281","DOIUrl":"https://doi.org/10.3390/fluids8100281","url":null,"abstract":"Wheels contribute significantly to the aerodynamic performance of ground vehicles. Many studies have focused on investigating a single wheel either in isolation or in a wheelhouse. However, there has been less focus on the flow field around a rear wheel, especially when considering varying proximity to the front wheel, despite its importance on aerodynamic forces. In this study, a generic reference body is modified and fitted with a rear wheel within a wheelhouse and analysed while the wheel spacing varies. Reynolds-Averaged Navier–Stokes (RANS) modelling was employed to allow for multiple variations to be considered and the model produced results in good agreement with experimental results. The results confirm that two upper rear wheelhouse outflow vortices are only present when the wheel spacing is short. It was found that the drag values were minimal for the wheel spacing at a critical distance of 1.5 wheel diameters. At this wheel spacing, the formation of the outboard jetting vortex is prevented at the rear wheel, and hence, the rear wheel drag is reduced by more than 10%. Any further reduction in the spacing does not provide any drag benefits. Also, the outflow from the front wheelhouse is projected further away from the body, drawing flow from the rear wheelhouse into the outboard jetting vortex.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135569201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comparison of Newtonian and Non-Newtonian Models for Simulating Stenosis Development at the Bifurcation of the Carotid Artery 模拟颈动脉分叉处狭窄发展的牛顿和非牛顿模型的比较
Fluids Pub Date : 2023-10-20 DOI: 10.3390/fluids8100282
Aikaterini C. Stamou, Jovana Radulovic, James M. Buick
{"title":"A Comparison of Newtonian and Non-Newtonian Models for Simulating Stenosis Development at the Bifurcation of the Carotid Artery","authors":"Aikaterini C. Stamou, Jovana Radulovic, James M. Buick","doi":"10.3390/fluids8100282","DOIUrl":"https://doi.org/10.3390/fluids8100282","url":null,"abstract":"Blood is a shear-thinning non-Newtonian fluid in which the viscosity reduces with the shear rate. When simulating arterial flow, it is well established that the non-Newtonian nature is important in the smallest vessels; however, there is no consistent view as to whether it is required in larger arteries, such as the carotid. Here, we investigate the importance of incorporating a non-Newtonian model when applying a plaque deposition model which is based on near-wall local haemodynamic markers: the time-averaged near wall velocity and the ratio of the oscillatory shear index to the wall shear stress. In both cases the plaque deposition was similar between the Newtonian and non-Newtonian simulations, with the observed differences being no more significant than the differences between the selected markers. More significant differences were observed in the haemodynamic properties in the stenosed region, the most significant being that lower levels of near-wall reverse flow were observed for a non-Newtonian fluid.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135569566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Simulation of Taylor—Couette—Poiseuille Flow at Re = 10,000 Re = 10,000时Taylor-Couette-Poiseuille流动的数值模拟
Fluids Pub Date : 2023-10-19 DOI: 10.3390/fluids8100280
Andrey Gavrilov, Yaroslav Ignatenko
{"title":"Numerical Simulation of Taylor—Couette—Poiseuille Flow at Re = 10,000","authors":"Andrey Gavrilov, Yaroslav Ignatenko","doi":"10.3390/fluids8100280","DOIUrl":"https://doi.org/10.3390/fluids8100280","url":null,"abstract":"A fully developed turbulent flow in a concentric annulus, Re =10,000, ri/ro=0.5, with an inner rotating cylinder in the velocity range N=Uω/Ub=0÷4, is studied via a large-eddy simulation. Also, for comparison, simulations by steady-state, unstatiounary RANS k-ω SST (URANS), and Elliptic Blending Model (EBM) were made. The main focus of this study is on the effect of high rotation on the mean flow, turbulence statistics, and vortex structure. Distribution of the tangential velocity and the Reynolds stress tensor change their behaviour at N>0.5∼1. With rotation increases, the production of tangential fluctuation becomes dominant over axial ones and the position of turbulent kinetic energy maximum shifts towards the wall into the buffer zone. URANS and EBM approaches show good agreement with LES in mean flow, turbulent statistics, and integral parameters. The difference in pressure loss prediction between LES and URANS does not exceed 20%, but the average difference is about 11%. The EBM approach underestimates pressure losses up to 9% and on average not more than 5%. Vortex structures are described well by URANS.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135730445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Summary: Boundary Layer Processes in Geophysical/Environmental Flows 地球物理/环境流动中的边界层过程
Fluids Pub Date : 2023-10-19 DOI: 10.3390/fluids8100279
Joseph Kuehl
{"title":"Editorial Summary: Boundary Layer Processes in Geophysical/Environmental Flows","authors":"Joseph Kuehl","doi":"10.3390/fluids8100279","DOIUrl":"https://doi.org/10.3390/fluids8100279","url":null,"abstract":"Boundary layer processes play a crucial role in establishing the circulation patterns of the oceans and atmosphere, significantly affecting both regional and global climate, as well as the distributions of heat, nutrients, species, pollutants and more [...]","PeriodicalId":12397,"journal":{"name":"Fluids","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135730368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface Roughness in RANS Applied to Aircraft Ice Accretion Simulation: A Review RANS的表面粗糙度在飞机冰积模拟中的应用综述
Fluids Pub Date : 2023-10-15 DOI: 10.3390/fluids8100278
Kevin Ignatowicz, François Morency, Héloïse Beaugendre
{"title":"Surface Roughness in RANS Applied to Aircraft Ice Accretion Simulation: A Review","authors":"Kevin Ignatowicz, François Morency, Héloïse Beaugendre","doi":"10.3390/fluids8100278","DOIUrl":"https://doi.org/10.3390/fluids8100278","url":null,"abstract":"Experimental and numerical fluid dynamics studies highlight a change of flow structure in the presence of surface roughness. The changes involve both wall heat transfer and skin friction, and are mainly restricted to the inner region of the boundary layer. Aircraft in-flight icing is a typical application where rough surfaces play an important role in the airflow structure and the subsequent ice growth. The objective of this work is to investigate how surface roughness is tackled in RANS with wall resolved boundary layers for aeronautics applications, with a focus on ice-induced roughness. The literature review shows that semi-empirical correlations were calibrated on experimental data to model flow changes in the presence of roughness. The correlations for RANS do not explicitly resolve the individual roughness. They principally involve turbulence model modifications to account for changes in the velocity and temperature profiles in the near-wall region. The equivalent sand grain roughness (ESGR) approach emerges as a popular metric to characterize roughness and is employed as a length scale for the RANS model. For in-flight icing, correlations were developed, accounting for both surface geometry and atmospheric conditions. Despite these research efforts, uncertainties are present in some specific conditions, where space and time roughness variations make the simulations difficult to calibrate. Research that addresses this gap could help improve ice accretion predictions.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136185075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Computation Fluid Dynamics to Determine Oil Droplet Breakup Parameters during Emulsion Atomization with Pressure Swirl Nozzles 用计算流体动力学方法确定压力旋流喷嘴乳化雾化过程中油滴破碎参数
Fluids Pub Date : 2023-10-14 DOI: 10.3390/fluids8100277
Miguel Ángel Ballesteros Martínez, Volker Gaukel
{"title":"Using Computation Fluid Dynamics to Determine Oil Droplet Breakup Parameters during Emulsion Atomization with Pressure Swirl Nozzles","authors":"Miguel Ángel Ballesteros Martínez, Volker Gaukel","doi":"10.3390/fluids8100277","DOIUrl":"https://doi.org/10.3390/fluids8100277","url":null,"abstract":"A wide range of commercial powdered products are manufactured by spray drying emulsions. Some product properties are dependent on the oil droplet size, which can be affected by fluid mechanics inside the spray nozzle. However, most of the key flow parameters inside the nozzles are difficult to measure experimentally, and theoretical estimations present deviations at high shear rates and viscosities. Therefore, the purpose of this study was to develop a computational model that could represent the multiphase flow in pressure swirl nozzles and could determine the deformation stresses and residence times that oil droplets experience. The multiphase flow was modelled using the Volume-of-Fluid method under a laminar regime. The model was validated with experimental data using the operating conditions and the spray angle. The numerically calculated shear stresses were found to provide a better prediction of the final oil droplet size than previous theoretical estimations. A two-step breakup mechanism inside of the nozzle was also proposed. Additionally, some of the assumptions used in the theoretical estimations could not be confirmed for the nozzles investigated: No complete air core developed inside of the nozzle during atomization, and the shear stress at the nozzle outlet is not the only stress that can affect oil droplet size. Elongation stresses cannot be neglected in all cases.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135804380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Study of the Influence of the Critical Reynolds Number on the Aerodynamic Characteristics of the Wing Airfoil 临界雷诺数对翼型气动特性影响的数值研究
Fluids Pub Date : 2023-10-13 DOI: 10.3390/fluids8100276
Anna Utkina, Andrey Kozelkov, Roman Zhuchkov, Dmitry Strelets
{"title":"Numerical Study of the Influence of the Critical Reynolds Number on the Aerodynamic Characteristics of the Wing Airfoil","authors":"Anna Utkina, Andrey Kozelkov, Roman Zhuchkov, Dmitry Strelets","doi":"10.3390/fluids8100276","DOIUrl":"https://doi.org/10.3390/fluids8100276","url":null,"abstract":"The paper reports the results of a study concerned with the influence of the size of the leading edge laminar bubble on the aerodynamic characteristics of the HGR01 airfoil. The completely turbulent and transient flows are considered. The mechanism of the appearance and interaction of laminar and turbulent flow separation near the leading and trailing edges of the airfoil is studied in detail. In the paper, the dependence of aerodynamic forces on the critical Reynolds number for the HGR01 airfoil is discussed. It has been established that the separation bubble at the leading edge can only be obtained using the laminar–turbulent transition model. Fully turbulent models are not able to show this feature of the airfoil flow. Graphs of the lift coefficient as a function of the critical Reynolds number, as well as the pressure distribution as a function of the size of the laminar bubble, are shown.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135858824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pipe Flow of Suspensions of Cellulose Nanocrystals 纤维素纳米晶体悬浮液的管道流动
Fluids Pub Date : 2023-10-12 DOI: 10.3390/fluids8100275
Saumay Kinra, Rajinder Pal
{"title":"Pipe Flow of Suspensions of Cellulose Nanocrystals","authors":"Saumay Kinra, Rajinder Pal","doi":"10.3390/fluids8100275","DOIUrl":"https://doi.org/10.3390/fluids8100275","url":null,"abstract":"The pipeline flow behavior of suspensions of cellulose nanocrystals (CNCs) was investigated over the CNC concentration range of 0.24 to 3.65 wt% in different diameter pipelines. The CNC suspensions were Newtonian below the CNC concentration of 1 wt%. At higher concentrations, the CNC suspensions were non-Newtonian power-law fluids. For Newtonian CNC suspensions, the experimental friction factor–Reynolds number data were obtained only in the turbulent regime, and the data followed the Blasius equation closely. For power-law CNC suspensions, the experimental data of friction factor–Reynolds number covered both laminar and turbulent regimes. The experimental data followed the friction factor–Reynolds number relationships for power-law fluids reasonably well.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135967745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信