Rendering Maxwell Equations into the Compressible Inviscid Fluid Dynamics Form

IF 1.8 Q3 MECHANICS
Fluids Pub Date : 2023-10-26 DOI:10.3390/fluids8110284
Peter Vadasz
{"title":"Rendering Maxwell Equations into the Compressible Inviscid Fluid Dynamics Form","authors":"Peter Vadasz","doi":"10.3390/fluids8110284","DOIUrl":null,"url":null,"abstract":"Maxwell equations governing electromagnetic effects are being shown to be equivalent to the compressible inviscid Navier–Stokes equations applicable in fluid dynamics and representing conservation of mass and linear momentum. The latter applies subject to a generalized Beltrami condition to be satisfied by the magnetic field. This equivalence indicates that the compressible inviscid Navier–Stokes equations are Lorentz invariant as they derive directly from the Lorentz-invariant Maxwell equations subject to the same Beltrami condition, provided the pressure wave propagates at the speed of light, i.e., vo=co. In addition, the derivation and results provide support for the claim that electromagnetic potentials have physical significance as demonstrated by Aharonov–Bohm effect, and are not only a convenient mathematical formulation.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fluids8110284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Maxwell equations governing electromagnetic effects are being shown to be equivalent to the compressible inviscid Navier–Stokes equations applicable in fluid dynamics and representing conservation of mass and linear momentum. The latter applies subject to a generalized Beltrami condition to be satisfied by the magnetic field. This equivalence indicates that the compressible inviscid Navier–Stokes equations are Lorentz invariant as they derive directly from the Lorentz-invariant Maxwell equations subject to the same Beltrami condition, provided the pressure wave propagates at the speed of light, i.e., vo=co. In addition, the derivation and results provide support for the claim that electromagnetic potentials have physical significance as demonstrated by Aharonov–Bohm effect, and are not only a convenient mathematical formulation.
将麦克斯韦方程组转换为可压缩无粘流体动力学形式
控制电磁效应的麦克斯韦方程被证明与流体动力学中适用的可压缩无粘纳维-斯托克斯方程等效,并表示质量和线性动量守恒。后者适用于由磁场满足的广义贝尔特拉米条件。这一等价性表明,如果压力波以光速传播,即vo=co,则可压缩无粘Navier-Stokes方程是洛伦兹不变的,因为它们直接推导自符合相同贝尔特拉米条件的洛伦兹不变麦克斯韦方程。此外,推导和结果支持了由Aharonov-Bohm效应所证明的电磁势具有物理意义,而不仅仅是一个方便的数学公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluids
Fluids Engineering-Mechanical Engineering
CiteScore
3.40
自引率
10.50%
发文量
326
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信