Fermentation最新文献

筛选
英文 中文
Primary Metabolites and Microbial Diversity in Commercial Kombucha Products 商用昆布茶产品中的初级代谢物和微生物多样性
Fermentation Pub Date : 2024-07-26 DOI: 10.3390/fermentation10080385
Jonathan H. Sogin, Randy W. Worobo
{"title":"Primary Metabolites and Microbial Diversity in Commercial Kombucha Products","authors":"Jonathan H. Sogin, Randy W. Worobo","doi":"10.3390/fermentation10080385","DOIUrl":"https://doi.org/10.3390/fermentation10080385","url":null,"abstract":"Kombucha brewers selling non-alcoholic beverages in the United States must ensure that the ethanol content of their products remains below 0.5% (v/v) throughout all stages of production and shelf life. Producers struggle to comply with this regulation in the absence of expensive dealcoholizing equipment if they wish to sell the unpasteurized or minimally pasteurized products that consumers typically expect. To identify which bacterial and/or fungal species contribute to the high ethanol content of commercial kombucha, we analyzed 47 commercial kombucha samples purchased at supermarkets near Cornell University in Ithaca, NY, USA. We analyzed samples for ethanol content via HPLC, microbial load determination, and next-generation amplicon sequencing of the bacterial and fungal populations of those samples. Two brands were found to contain significantly more than 0.5% ethanol (v/v) in the tested samples (t-test, p < 0.05, greater), and three brands were found to contain significantly different amounts of sugar in the tested samples compared to what was reported on the nutrition label (one higher and two lower, t-test, p < 0.05, two-sided). The microbial communities of the samples most significantly varied due to brand (PERMANOVA, p < 0.05). The main bacterial genera observed in the samples were Komagataeibacter, Acetobacter, Gluconobacter, Oenococcus, Lactobacillus, and Bifidobacterium. The main fungal genera observed in the samples were Saccharomyces, Dekkera, Cyberlindnera, Lachancea, Schizosaccharomyces, and Pichia. We did not identify any bacterial or fungal species associated with differences in ethanol content between samples within brands, suggesting significant strain variation in the bacteria and fungi involved in commercial kombucha fermentation. However, we did find that the relative abundance of Lactobacillales and the lactic acid content of the samples were significantly correlated (Kendall correlation test, p < 0.05). These results build upon recent research elucidating the role of lactic acid bacteria in the commercial fermentation of kombucha.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"43 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141799021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Black Tea Kombucha Consumption: Effect on Cardiometabolic Parameters and Diet Quality of Individuals with and without Obesity 饮用红茶昆布茶:对肥胖症患者和非肥胖症患者心脏代谢参数和饮食质量的影响
Fermentation Pub Date : 2024-07-26 DOI: 10.3390/fermentation10080384
G. M. Fraiz, M. A. C. Costa, Rodrigo R. Cardoso, James R. Hébert, Longgang Zhao, V. Corich, A. Giacomini, F. Milagro, F. A. R. Barros, Josefina Bressan
{"title":"Black Tea Kombucha Consumption: Effect on Cardiometabolic Parameters and Diet Quality of Individuals with and without Obesity","authors":"G. M. Fraiz, M. A. C. Costa, Rodrigo R. Cardoso, James R. Hébert, Longgang Zhao, V. Corich, A. Giacomini, F. Milagro, F. A. R. Barros, Josefina Bressan","doi":"10.3390/fermentation10080384","DOIUrl":"https://doi.org/10.3390/fermentation10080384","url":null,"abstract":"Background: Kombucha, a fermented tea, has been suggested as an adjuvant in the treatment of obesity. Although animal and in vitro studies indicate its promising benefits, exploring kombucha’s impact on human health is necessary. Methods: This quasi-experimental pre–post-intervention assessed the effect of black tea kombucha consumption on cardiometabolic parameters for 8 weeks, considering the quality of the diet of individuals with and without obesity. Diet quality was assessed through the Dietary Inflammatory Index® and Dietary Total Antioxidant Capacity. Paired t-test/Wilcoxon was applied to compare differences between pre- and post-intervention (α = 0.05). Results: After the intervention, individuals with obesity showed a decrease in insulin, HOMA-IR, and GGT; those without obesity showed an increase in total cholesterol and alkaline phosphatase, but this was only observed in those with a worsened diet quality. Conclusion: kombucha intake demonstrated positive impacts on the metabolic health of individuals with obesity beyond the importance of combining it with healthy eating patterns.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"12 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141801011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chia Seed Mucilage as a Functional Ingredient to Improve Quality of Goat Milk Yoghurt: Effects on Rheology, Texture, Microstructure and Sensory Properties 奇异籽黏液作为一种功能性成分改善山羊奶酸奶的质量:对流变学、质地、微观结构和感官特性的影响
Fermentation Pub Date : 2024-07-26 DOI: 10.3390/fermentation10080382
Marina Hovjecki, M. Radovanovic, S. Levic, M. Mirković, Ivana Peric, Zorana Miloradović, Irena Barukcic Jurina, J. Miočinović
{"title":"Chia Seed Mucilage as a Functional Ingredient to Improve Quality of Goat Milk Yoghurt: Effects on Rheology, Texture, Microstructure and Sensory Properties","authors":"Marina Hovjecki, M. Radovanovic, S. Levic, M. Mirković, Ivana Peric, Zorana Miloradović, Irena Barukcic Jurina, J. Miočinović","doi":"10.3390/fermentation10080382","DOIUrl":"https://doi.org/10.3390/fermentation10080382","url":null,"abstract":"In contact with water, chia seeds release mucilage (MC), which is a source of various health-promoting compounds including dietary fibres. MC has been previously used as a thickening agent in cow milk yoghurt, but there are no available data on its application in goat milk. In this study, three goat milk yoghurts (without—MC0, with 1.5%—MC15 and with 3% mucilage—MC30) were produced. The rheology, texture, microbial counts, syneresis, microstructure and sensory acceptance of the yoghurts were investigated. The MC addition resulted in a reduced hysteresis area, but increased yoghurt viscosity at lower shear rates. It also improved all texture parameters at both concentration levels, while syneresis values were reduced only in sample MC30. The MC addition promoted lactobacilli viability in both supplemented yoghurts. The texture perceived by sensory evaluation was rated the highest for the sample MC30, which was also the most accepted by consumers overall. Critical attributes that reduced the acceptability of all yoghurts were flavour and acidity. In conclusion, chia seed mucilage can be used as a functional ingredient in goat milk yoghurt to produce an innovative dairy product and meet consumer expectations.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"11 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141801890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biohydrogen Production from Methane-Derived Biomass of Methanotroph and Microalgae by Clostridium 梭状芽孢杆菌利用甲烷和微藻产生的甲烷生物质生产生物氢
Fermentation Pub Date : 2024-07-26 DOI: 10.3390/fermentation10080383
Yuxuan Sang, Zhangzhang Xie, Liangyan Li, Oumei Wang, Shiling Zheng, Fanghua Liu
{"title":"Biohydrogen Production from Methane-Derived Biomass of Methanotroph and Microalgae by Clostridium","authors":"Yuxuan Sang, Zhangzhang Xie, Liangyan Li, Oumei Wang, Shiling Zheng, Fanghua Liu","doi":"10.3390/fermentation10080383","DOIUrl":"https://doi.org/10.3390/fermentation10080383","url":null,"abstract":"Methane, a potent greenhouse gas, represents both a challenge and an opportunity in the quest for sustainable energy. This work investigates the biotechnology for converting methane into clean, renewable hydrogen. The co-culture of Chlorella sacchrarophila FACHB 4 and Methylomonas sp. HYX-M1 was demonstrated to completely convert 1 mmol of methane to biomass within 96 h. After acid digestion of such biomass, up to 45.05 μmol of glucose, 4.07 μmol of xylose, and 26.5 μmol of lactic acid were obtained. Both Clostridium pasteurianum DSM525 and Clostridium sp. BZ-1 can utilize those sugars to produce hydrogen without any additional organic carbon sources. The higher light intensity in methane oxidation co-culture systems resulted in higher hydrogen production, with the BZ-1 strain producing up to 14.00 μmol of hydrogen, 8.19 μmol of lactate, and 6.09 μmol of butyrate from the co-culture biomass obtained at 12,000 lux. The results demonstrate that the co-culture biomass of microalgae and methanotroph has the potential to serve as a feedstock for dark fermentative hydrogen production. Our study highlights the complexities inherent in achieving efficient and complete methane-to-hydrogen conversion, positioning this biological approach as a pivotal yet demanding area of research for combating climate change and propelling the global energy transition.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"116 23","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141802060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Urea-Induced Enhancement of Hypocrellin A Synthesis in Shiraia bambusicola GDMCC 60438: Strategies and Mechanisms 尿素诱导的白毛茛属植物 GDMCC 60438 中 Hypocrellin A 合成的增强:策略与机制
Fermentation Pub Date : 2024-07-25 DOI: 10.3390/fermentation10080381
Yanbo Tang, Yongdi Wen, Xiang Zhang, Qian Gao, Fuqiang Yu, Zhenqiang Wu, Xiaofei Tian
{"title":"Urea-Induced Enhancement of Hypocrellin A Synthesis in Shiraia bambusicola GDMCC 60438: Strategies and Mechanisms","authors":"Yanbo Tang, Yongdi Wen, Xiang Zhang, Qian Gao, Fuqiang Yu, Zhenqiang Wu, Xiaofei Tian","doi":"10.3390/fermentation10080381","DOIUrl":"https://doi.org/10.3390/fermentation10080381","url":null,"abstract":"Hypocrellin A (HA) is a valuable pigment with promising applications in biotechnology and pharmaceuticals. The submerged cultivation of Shiraia bambusicola offers a strategic opportunity to enhance HA production. This study investigates the regulatory mechanisms for HA biosynthesis through urea supplementation and presents a strategy to increase HA yield. In the absence of urea, S. bambusicola (GDMCC 60438) does not synthesize HA. However, the addition of 40 g/L urea 12 h into the fermentation process results in a final HA production of 46.7 ± 8.2 mg/L. Morphological analysis reveals an optimized environment for HA synthesis, characterized by a densely intertwined and reticular hyphal structure with minute pores. RNA sequencing shows significant upregulation of genes involved in DNA repair, recombination, and metabolism. Conversely, genes related to cellular homeostasis, cell-wall chitin, and amino polysaccharide metabolism are downregulated. Urea supplementation facilitates the upregulation of amino acid metabolism and the cysteine desulfurase gene, enhancing acetyl-CoA accumulation within the mycelium and providing the necessary precursor materials for HA synthesis. Our work underscores the pivotal role of urea in regulating HA biosynthesis and proposes a practical approach to enhance HA production. The findings contribute novel insights to the fields of biotechnology for pharmaceuticals.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"41 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141805827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of the Gamma-Aminobutyric Acid (GABA) Biosynthetic Gene Cluster in High GABA-Producing Enterococcus avium G-15 高产 GABA 肠球菌 G-15 中的γ-氨基丁酸 (GABA) 生物合成基因簇的特征
Fermentation Pub Date : 2024-07-25 DOI: 10.3390/fermentation10080379
M. Noda, Moeko Ozaki, Saori Ogura, Narandalai Danshiitsoodol, Etsuji Nakashima, Masanori Sugiyama
{"title":"Characterization of the Gamma-Aminobutyric Acid (GABA) Biosynthetic Gene Cluster in High GABA-Producing Enterococcus avium G-15","authors":"M. Noda, Moeko Ozaki, Saori Ogura, Narandalai Danshiitsoodol, Etsuji Nakashima, Masanori Sugiyama","doi":"10.3390/fermentation10080379","DOIUrl":"https://doi.org/10.3390/fermentation10080379","url":null,"abstract":"We have previously shown that the lactic acid bacterium (LAB) Enterococcus avium G-15 produces gamma-aminobutyric acid (GABA) from monosodium l-glutamate (Glu) at a hyper conversion rate. We have also found a gene cluster, designated as a gad cluster, that consists of four genes for the conversion of Glu to GABA, a Glu–GABA antiporter, and two transcriptional regulatory proteins, GadR1 and GadR2. The present study has been designed to investigate what characteristics of the GadG enzyme may contribute to the high production of GABA and how these two regulators play a role in high GABA productivity. The kinetic study showed that compared with E. coli glutamate decarboxylase (GAD) enzymes, GadG has relatively high Km (1.3–2.4 times) and kcat (1.3–1.6 times) values, indicating that although there are no remarkable differences in kinetic parameters between the three GAD enzymes, GadG may contribute to the high production of GABA in the presence of enough substrates. Further, the G-15 strain lacks the ornithine decarboxylase pathway-based acid resistance mechanism observed in some LAB strains, suggesting that the GAD-based acid resistance system is relatively important and may be vigorously employed in the G-15 strain. The molecular biological analysis of GadR1 revealed that the protein plays a role in GABA production as a transcriptional activator through an indirect pathway.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"1 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141803209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Health-Promoting Effects of Lactobacillus acidophilus and Its Technological Applications in Fermented Food Products and Beverages 嗜酸乳杆菌对健康的促进作用及其在发酵食品和饮料中的技术应用
Fermentation Pub Date : 2024-07-25 DOI: 10.3390/fermentation10080380
Yanyan Liu, Hira Nawazish, Muhammad Salman Farid, Khansa Abdul Qadoos, Umm E. Habiba, Muhammad Muzamil, Mahwish Tanveer, Monika Sienkiewicz, A. Lichota, Łukasz Łopusiewicz
{"title":"Health-Promoting Effects of Lactobacillus acidophilus and Its Technological Applications in Fermented Food Products and Beverages","authors":"Yanyan Liu, Hira Nawazish, Muhammad Salman Farid, Khansa Abdul Qadoos, Umm E. Habiba, Muhammad Muzamil, Mahwish Tanveer, Monika Sienkiewicz, A. Lichota, Łukasz Łopusiewicz","doi":"10.3390/fermentation10080380","DOIUrl":"https://doi.org/10.3390/fermentation10080380","url":null,"abstract":"Lactobacillus acidophilus is a probiotic bacterium that possesses numerous health-promoting properties and has significant technological applications in the fermentation of a wide range of food products and beverages. This review discusses the health benefits of L. acidophilus, including its ability to enhance immunity; promote digestive wellness; and exhibit antioxidant, antitumor, and antimicrobial properties. This review also discusses the production of bioactive peptides and extracellular polysaccharides (EPS) by L. acidophilus. Factors, such as salinity, temperature, carbon sources, and nutrient availability, influence the growth of L. acidophilus, which can affect the survival and bioactive potential of fermented products. The proteolytic effects of L. acidophilus contribute to protein breakdown, which leads to the release of bioactive peptides with various health benefits. This review also discusses the applications of L. acidophilus in the fermentation of dairy products, cereal beverages, soymilk, fruit and vegetable juices, and other functional food preparations, highlighting its potential for improving the nutritional value, organoleptic properties, and probiotic delivery of these products. This review highlights the importance of understanding and controlling fermentation conditions to maximize the growth and health-promoting benefits of L. acidophilus in various food and beverage products.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"13 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141803675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Lactobacillus plantarum and Cellulase on Mixed Silages of Amaranthus hypochondriacus and Cornmeal: Fermentation Characteristics, Nutritional Value, and Aerobic Stability 植物乳杆菌和纤维素酶对苋菜和玉米粉混合青贮的影响:发酵特性、营养价值和有氧稳定性
Fermentation Pub Date : 2024-07-24 DOI: 10.3390/fermentation10080378
Xinxin Li, Yitong Jin, Fuhou Li, Meng Yu, Jiarui Du, Qixuan Yi, Tianyue Zhao, Bao Yuan, Peng Wang
{"title":"Effects of Lactobacillus plantarum and Cellulase on Mixed Silages of Amaranthus hypochondriacus and Cornmeal: Fermentation Characteristics, Nutritional Value, and Aerobic Stability","authors":"Xinxin Li, Yitong Jin, Fuhou Li, Meng Yu, Jiarui Du, Qixuan Yi, Tianyue Zhao, Bao Yuan, Peng Wang","doi":"10.3390/fermentation10080378","DOIUrl":"https://doi.org/10.3390/fermentation10080378","url":null,"abstract":"In order to develop new feed resources, the aim of this study was to investigate the effects of moisture content, additives, and their interactions on the fermentation quality, aerobic stability, and in vitro digestibility of mixed silage of amaranth and cornmeal. The mass ratios of amaranth and cornmeal were 69:31, 76:24, and 84:16 for adjusting the moisture content of silage to 60% (W1), 65% (W2), and 70% (W3), respectively. The silage treatments included no additives (U), the addition of Lactobacillus plantarum (L), the addition of cellulase (E), and the addition of Lactobacillus plantarum + cellulase (M) mixed reagents. The results revealed that the pH and ammonia nitrogen (NH3-N/TN) ratios were significantly lower in W1 than in W2 and W3 (3.66,19.3 g kg−1 TN vs. 3.70, 3.70, 20.0 kg−1 TN, 25.1 kg−1 TN, p < 0.05). Moreover, dry matter (DM), organic matter (OM), in vitro dry matter digestibility (ivDMD), in vitro organic matter digestibility (ivOMD), and in vitro crude protein digestibility (ivCPD) significantly increased (p < 0.05). Meanwhile, the aerobic stability of mixed silage containing amaranth and cornmeal decreased with increasing water content. The aerobic stability of the L, E, and M treatment groups was improved by 15, 105, and 111 h, respectively, compared with that of the control group at W1. The pH and NH3-N/TN ratios were lower with the addition of E (E and M) than with the absence of E (U and L) (3.73, 20.1 g kg−1 DM vs. 3.64, 22.9 g kg−1 DM, p < 0.05). NDF and ADF were significantly lower with the addition of E than without the addition of E (598 g kg−1 DM, 145 g kg−1 DM vs. 632 g kg−1 DM, 160 g kg−1 DM, p < 0.05). However, CP, ivDMD, ivOMD, and ivCPD were significantly higher (p < 0.05). AA and NH3-N/TN were significantly lower (p < 0.05) with the addition of L (L and M) than without the addition of L (U and E). In conclusion, the best fermentation quality, in vitro digestibility, and aerobic stability of amaranth and cornmeal mixed silage treated with Lactobacillus plantarum + cellulase (M) were achieved at 60% water content. The present study confirmed the potential of amaranth as silage and its potential application for improving feed quality and animal performance.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141809452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing a Symbiotic Fermented Milk Product with Microwave-Treated Hawthorn Extract 用微波处理过的山楂提取物开发共生发酵奶产品
Fermentation Pub Date : 2024-07-24 DOI: 10.3390/fermentation10080377
A. Utebaeva, Eleonora Gabrilyants, Zh. A. Abish
{"title":"Developing a Symbiotic Fermented Milk Product with Microwave-Treated Hawthorn Extract","authors":"A. Utebaeva, Eleonora Gabrilyants, Zh. A. Abish","doi":"10.3390/fermentation10080377","DOIUrl":"https://doi.org/10.3390/fermentation10080377","url":null,"abstract":"The rising interest in functional foods has increased the use of probiotics and prebiotics in fermented dairy products to enhance gut health. This study focuses on developing a symbiotic fermented milk product using Lactobacillus acidophilus and Bifidobacterium bifidum activated with hawthorn extract as a prebiotic. Three versions of the product were tested: a control and two variants with B. bifidum activated with 10−5 g/cm3 and 10−10 g/cm3 hawthorn extract, respectively. Key characteristics such as microbiological safety, sensory properties, amino acid profile, vitamin and mineral content, antioxidant capacity, and nutritional values were evaluated. Results showed that products enriched with hawthorn extract had favorable sensory properties and sustained high levels of lactic acid bacteria while being free of pathogens. Product 1 based on L. acidophilus and enriched with B. bifidum activated with hawthorn extract at a concentration of 10−5 g/cm3 demonstrated significant increases in L. acidophilus (24.1%) and B. bifidum (14.7%) after 7 days compared to the control. Both enriched products exhibited slower titratable acidity increases and higher viscosities over 14 days, indicating better preservation and texture stability. Product 1 was notably enriched with essential amino acids, vitamins, and minerals, alongside enhanced antioxidant properties due to increased flavonoid content. The technology developed ensures probiotic viability at 109–1010 CFU/cm3 after 14 days, making it viable for dairy production.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"48 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141807240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing Waste Sunflower Oil as a Substrate for Citric Acid Production: The Inhibitory Effect of Triton X-100 评估作为柠檬酸生产底物的废弃葵花籽油:Triton X-100 的抑制作用
Fermentation Pub Date : 2024-07-22 DOI: 10.3390/fermentation10070374
Bilge Sayın, A. Bozkurt, G. Kaban
{"title":"Assessing Waste Sunflower Oil as a Substrate for Citric Acid Production: The Inhibitory Effect of Triton X-100","authors":"Bilge Sayın, A. Bozkurt, G. Kaban","doi":"10.3390/fermentation10070374","DOIUrl":"https://doi.org/10.3390/fermentation10070374","url":null,"abstract":"In this study, waste sunflower oils were evaluated as substrates for citric acid (CA) production by Yarrowia lipolytica IFP29 (ATCC 20460). This strain was selected based on its capacity to produce organic acids in a selective medium. Attempts were made to optimize the process using the Taguchi statistical method in terms of the oil polarity, oil concentration, fermentation time, and Triton X-100 concentration. The results indicated that Y. lipolytica IFP29 utilized waste sunflower oil as a substrate and produced a maximum CA of 32.17 ± 1.44 g/L. Additionally, Triton X-100 inhibited the production of CA. For this reason, this process could not be optimized. These results were obtained by periodically adjusting the pH with NaOH during the fermentation period. On the other hand, a new experimental design was created without Triton X-100. As a buffering agent, 2-morpholinoethanesulfonic acid monohydrate (MES) was used to prevent a drop in pH; the maximum concentration of CA was found to be 20.31 ± 2.76. The optimum conditions were as follows: 90 g/L of waste sunflower oil with a polarity of 16 and 12 days of fermentation. According to the analysis of variance results, the effects of factors other than polarity on CA production were found to be significant (p < 0.05).","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"37 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141816667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信