Frontiers in Earth Science最新文献

筛选
英文 中文
Study of response characteristics of cross-well induced polarization method in anisotropic media 研究各向异性介质中交叉井诱导偏振法的响应特性
IF 2.9 3区 地球科学
Frontiers in Earth Science Pub Date : 2024-08-22 DOI: 10.3389/feart.2024.1443764
Zhang Junke, Zhou Lei, Wang Xinyu, Xie Xingbing, Mao Yurong, Yan Liangjun
{"title":"Study of response characteristics of cross-well induced polarization method in anisotropic media","authors":"Zhang Junke, Zhou Lei, Wang Xinyu, Xie Xingbing, Mao Yurong, Yan Liangjun","doi":"10.3389/feart.2024.1443764","DOIUrl":"https://doi.org/10.3389/feart.2024.1443764","url":null,"abstract":"The borehole induced polarization method has been widely used in deep mineral exploration, oil and gas resource exploration, and water resource exploration because of its high efficiency and good exploration effect. At present, the related research on the cross-well induced polarization method assumes that the underground medium is isotropic, but the electrical characteristics of the actual earth medium are anisotropic. To analyze the influence of the anisotropic characteristics on the cross-well induced polarization method, in this paper, the anisotropic forward algorithm of conductivity and polarizability in different principal axis directions based on the finite element method is studied. A three-dimensional forward simulation of the cross-well induced polarization method in anisotropic media is realized. The effectiveness and correctness of the algorithm are verified by testing and comparing complex 3-D isotropic and anisotropic models. Anisotropic geological models of the horizontal plate and inclined plate are constructed to analyze the anisotropic influences of conductivity and polarizability in different principal axis directions on the cross-well induced polarization response. The results show that the emitter sources with different depths in the well have different influences on the electrical response of the plates. Anisotropic conductivity and polarizability in horizontal plates exhibit most pronounced characteristics in the x-direction, significantly influencing the apparent polarizability curves. However, when the resistivity and polarizability are both anisotropic, the change in the z-direction is the most complicated. When the plate is inclined, the amplitude of the electrical response curve decreases to a certain extent, and the position where the amplitude appears shifts to different degrees. Notably, the response curves of the y-direction anisotropy are basically consistent with the response curves of the isotropy, regardless of the anisotropy of the conductivity and polarizability or anomalous body tilts. The results of this study improve our understanding of the influence of anisotropy on cross-well induced polarization and provide theoretical support for the interpretation of cross-well induced polarization data considering anisotropy.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"298 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study of 3D axis anisotropic response of MT MT 的三维轴向各向异性响应研究
IF 2.9 3区 地球科学
Frontiers in Earth Science Pub Date : 2024-08-22 DOI: 10.3389/feart.2024.1454962
Xiao Liu, Qi-Ji Sun
{"title":"A study of 3D axis anisotropic response of MT","authors":"Xiao Liu, Qi-Ji Sun","doi":"10.3389/feart.2024.1454962","DOIUrl":"https://doi.org/10.3389/feart.2024.1454962","url":null,"abstract":"Electrical anisotropy has a significant impact on the observation data of the magnetotelluric (MT) method; therefore, it is necessary to develop forward and inverse methods in electrical anisotropic media. Based on the axis anisotropic electric field control equations, forming a large linear equation through staggered finite difference approximation, adding boundary conditions, and using the quasi-minimum residual method to solve the equation, this study obtained MT forward modeling results in axis anisotropic media. The correctness of the algorithm was verified by comparing it with the 2D quasi-analytic solution. By designing several sets of axis anisotropic 3D models, the characteristics of the apparent resistivity tensor and tipper were analyzed. The results indicated that the <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:msubsup><mml:mi>ρ</mml:mi><mml:mrow><mml:mi>x</mml:mi><mml:mi>y</mml:mi></mml:mrow><mml:mi>a</mml:mi></mml:msubsup></mml:mrow></mml:math></jats:inline-formula>, <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:msubsup><mml:mi>ρ</mml:mi><mml:mrow><mml:mi>y</mml:mi><mml:mi>y</mml:mi></mml:mrow><mml:mi>a</mml:mi></mml:msubsup></mml:mrow></mml:math></jats:inline-formula> and <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mi>z</mml:mi><mml:mi>y</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></jats:inline-formula> are sensitive to changes in resistivity in the X direction of the anomalous body, whereas the <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:msubsup><mml:mi>ρ</mml:mi><mml:mrow><mml:mi>y</mml:mi><mml:mi>x</mml:mi></mml:mrow><mml:mi>a</mml:mi></mml:msubsup></mml:mrow></mml:math></jats:inline-formula>, <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:msubsup><mml:mi>ρ</mml:mi><mml:mrow><mml:mi>x</mml:mi><mml:mi>x</mml:mi></mml:mrow><mml:mi>a</mml:mi></mml:msubsup></mml:mrow></mml:math></jats:inline-formula> and <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mi>z</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math></jats:inline-formula> are sensitive to changes in resistivity in the Y direction. The apparent resistivity tensor and tipper are insensitive to changes in resistivity in the Z direction of the anomalous body. For exploration of anisotropic media, the apparent resistivity tensor and tipper of MT can identify the changes in resistivity in two horizontal axes directions and the boundaries of the anomalous body, which has the advantages for exploration.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"2672 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lithofacies identification of deep coalbed methane reservoir based on high-resolution seismic inversion 基于高分辨率地震反演的深层煤层气储层岩性识别
IF 2.9 3区 地球科学
Frontiers in Earth Science Pub Date : 2024-08-22 DOI: 10.3389/feart.2024.1440729
Yu Qi, Kui Wu, Bo Wang, Xiaowen Zheng, Wenlan Li, Dan Li
{"title":"Lithofacies identification of deep coalbed methane reservoir based on high-resolution seismic inversion","authors":"Yu Qi, Kui Wu, Bo Wang, Xiaowen Zheng, Wenlan Li, Dan Li","doi":"10.3389/feart.2024.1440729","DOIUrl":"https://doi.org/10.3389/feart.2024.1440729","url":null,"abstract":"During the exploration and development of deep coalbed methane (CBM), delineating the thickness of coal seam and lithofacies of the roof and floor is one of the major challenging tasks. In past attempts, the prediction methods of these parameters have been limited to the conventional inversion. However, the effect of coal shielding on adjacent reflecting layers restricts the identification of underlying sand effectively by conventional inversion. Also, the depth at which the deep CBM zone is located (1,500–2000 m) produces a significant overlap of P-wave impedance and Vp/Vs of sands and shale which increases classification uncertainty between these two lithofacies. We proposed a new workflow for high-precision quantitative seismic interpretation of deep CBM reservoir. Not only P-wave impedance but also GR is selected as the optimized attributes for lithofacies classification. To reduce the effect of strong reflection of coal seam and identifying thin coal layers, the seismic waveform indication inversion method is used to obtain high-resolution results of P-wave impedance and GR. It uses horizontal changes in seismic waveforms to reflect lithological assemblage characteristics for facies-controlled constraints. Then, Bayesian classification theory is used to achieve three-dimensional lithofacies classification with multi-source data. To improve the continuity and accuracy of the interpreted results, a Markov chain is applied in the Bayesian rule as the spatial prior constraint. A well-associated synthetic test and field data application in Ordos Basin demonstrates the accuracy of the proposed workflow. Compared with conventional inversion, the results of proposed workflow showed higher resolution and accuracy. By providing a new solution for the identification of roof and floor lithofacies of deep CBM reservoir, this workflow aims to contribute to the better exploration and development of deep CBM.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"5 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying the impact of climate change and urbanization on groundwater resources using geospatial modeling 利用地理空间建模量化气候变化和城市化对地下水资源的影响
IF 2.9 3区 地球科学
Frontiers in Earth Science Pub Date : 2024-08-22 DOI: 10.3389/feart.2024.1377367
Junaid Ali, Fakhrul Islam, Tehmina Bibi, Ijazul Islam, Muhammad Rizwan Mughal, Muhammad Sabir, Fuad Awwad, Emad Ismail
{"title":"Quantifying the impact of climate change and urbanization on groundwater resources using geospatial modeling","authors":"Junaid Ali, Fakhrul Islam, Tehmina Bibi, Ijazul Islam, Muhammad Rizwan Mughal, Muhammad Sabir, Fuad Awwad, Emad Ismail","doi":"10.3389/feart.2024.1377367","DOIUrl":"https://doi.org/10.3389/feart.2024.1377367","url":null,"abstract":"Urbanization poses a significant threat to environmental sustainability, particularly in Pakistan, where uncontrolled urban growth and water mismanagement have exacerbated water scarcity and climate variability. This study investigates the spatiotemporal impacts of urbanization and climate change on groundwater in Lahore District, Pakistan. various parameters were considered to execute the study including land use/land cover (LULC), rainfall, Land Surface Temperature (LST), ground wells and population data using advanced techniques such as Random Forest machine learning algorithm, Climate Hazards Group Infrared Precipitation, and geographically weighted regression (GWR) analysis. Our findings reveal that urbanization has severely impacted the water table in the north, northwest, and southwest areas. There is a significant negative negative correlation (−0.333) between the quantity of groundwater level (GWL) and the annual average LST whereas, the <jats:italic>p</jats:italic>-value (0.75) is also showing highly significant relation of GWL and LST in the study area. Whereas a positive association (0.666) exist (<jats:italic>p</jats:italic>-value 0.333 moderately significant) between yearly GWL and the mean precipitation. This research provides crucial insights for policymakers to understand the effects of urbanization and climate change on groundwater and develop strategies to mitigate adverse impacts in the study area.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"60 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of ecological prevention and control technology for expansive soil slope 膨胀土边坡生态防治技术分析
IF 2.9 3区 地球科学
Frontiers in Earth Science Pub Date : 2024-08-22 DOI: 10.3389/feart.2024.1453178
Wenbing Tao, Yingwen Wen, Xia Bian, Zhilin Ren, Long Xu, Fei Wang, Hu Zheng
{"title":"Analysis of ecological prevention and control technology for expansive soil slope","authors":"Wenbing Tao, Yingwen Wen, Xia Bian, Zhilin Ren, Long Xu, Fei Wang, Hu Zheng","doi":"10.3389/feart.2024.1453178","DOIUrl":"https://doi.org/10.3389/feart.2024.1453178","url":null,"abstract":"For the expansion soil slope in the JiangHuai area before the disposal of the neglect of expansion of the weak defects and slope disposal after the poor long-term stability of the current situation. This study investigates the ability of ecological slope protection technology to cope with the destabilizing geohazard of expansive soil slopes. Analyzing the collapse reasons of weak expansive soil slopes in the JiangHuai region based on the reinforcement project of expansive soil slopes along highways in the JiangHuai region, combined with actual engineering research, a “storage-resistance” water regulation ecological prevention and control technology is proposed. The feasibility and sustainability of the ecological slope protection technology is discussed in terms of its principles and influencing factors, and the protection effect is verified by combining numerical simulation and field test methods. Research findings suggest that the “storage-resistance” technology effectively prevents rainwater infiltration, particularly under light rain conditions, with continuous blocking capability. Under rainstorm conditions, it can prevent infiltration for about 4 h, significantly enhancing slope stability. Slope rate variations show no significant impact on reinforced slope stability, with maximum deformation occurring at the slope’s foot after rainfall. Reinforcement plans should prioritize strengthening support at the slope’s base. Proper selection and optimization of technical parameters can lead to more economical and sustainable solutions while extending protection time. Field trials confirm the suitability of the “storage and blocking” water regulation ecological control technology for the JiangHuai region, particularly where light rain prevails. These findings suggest that ecological control techniques for expansive soil slopes can effectively regulate slope moisture changes and reduce the geohazard risk of expansive soil slope instability.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"3 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis on the dynamics of flexible drillstring under different drilling parameters 不同钻井参数下柔性钻杆的动力学分析
IF 2.9 3区 地球科学
Frontiers in Earth Science Pub Date : 2024-08-22 DOI: 10.3389/feart.2024.1396784
Jifei Cao, Deyong Zou, Qilong Xue, Jin Wang, Leilei Huang, Feng Guo, Chong Wang, Jun Qu
{"title":"Analysis on the dynamics of flexible drillstring under different drilling parameters","authors":"Jifei Cao, Deyong Zou, Qilong Xue, Jin Wang, Leilei Huang, Feng Guo, Chong Wang, Jun Qu","doi":"10.3389/feart.2024.1396784","DOIUrl":"https://doi.org/10.3389/feart.2024.1396784","url":null,"abstract":"During the operation of the drill string, it displays a degree of flexibility. Simultaneously, its dynamic properties, influenced by complex stress conditions, manifest nonlinearity and uncertainty. A comprehensive investigation into the dynamics of flexible drill strings is imperative for deep well drilling. This paper presents a model that simulates random interactions between a flexible drill string and the borehole wall, simplifying the actual drill string model using analogous principles. Dynamic simulation software is utilized for analysis, and an indoor experimental setup has been established. The results reveal that with a constant weight on bit (WOB), higher drill string rotational speeds correlate with increased susceptibility to buckling deformation. Additionally, the critical time for deformation onset exhibits a nearly linear relationship with rotational speed. Maintaining a constant rotational speed, an increase in WOB enhances the likelihood of buckling deformation. The experimental findings suggest a correlation between the drill string’s rotation frequency and the WOB.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"9 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontiers | Integrated surface-subsurface reservoir zonation of the Early Bartonian nummulitic limestone in central Tunisia and eastern Tunisian offshore 突尼斯中部和东部近海早巴顿期泥质灰岩的地表-地下储层综合分区
IF 2.9 3区 地球科学
Frontiers in Earth Science Pub Date : 2024-08-21 DOI: 10.3389/feart.2024.1452977
Jihede Haj Messaoud, Nicolas Thibault, Brahimsamba Bomou, Thierry Adatte, Mohammed H. Aljahdali, Chokri Yaich
{"title":"Frontiers | Integrated surface-subsurface reservoir zonation of the Early Bartonian nummulitic limestone in central Tunisia and eastern Tunisian offshore","authors":"Jihede Haj Messaoud, Nicolas Thibault, Brahimsamba Bomou, Thierry Adatte, Mohammed H. Aljahdali, Chokri Yaich","doi":"10.3389/feart.2024.1452977","DOIUrl":"https://doi.org/10.3389/feart.2024.1452977","url":null,"abstract":"The Early Bartonian Reneiche/Siouf member is one of the primary conventional carbonate oil/gas reservoirs to be assessed in Tunisia that demands detailed evaluation. Accurate zonation and modeling of this reservoir require an integrated approach combining surface and subsurface studies. This research focuses on the depositional, diagenetic, and stratigraphic factors affecting reservoir quality and porosity within the Reneiche/Siouf member, utilizing an integrated surface-subsurface analysis. The primary aim is to understand the reservoir zonation of the Reineche Member near Kerkennah archipelago (eastern Tunisian offshore) and its lateral equivalents in central Tunisia the Siouf Member (outcrop analogue). Gamma-ray and sonic logs from the Reineche Member in the southern and southeastern Pelagian Platform (Tunisian offshore) identify three distinct limestone units (A, C, and E). These units transition into a single mud-dominated limestone unit (C) to the east and northeast of the Kerkennah archipelago. In contrast, the western Pelagian Platform (onshore) and Central Tunisia present a different stratigraphy for the Reineche/Siouf Member, comprising two limestone units: the Lower Reneiche Limestone (LRL) and the Upper Reneiche Limestone (URL), corresponding to Units C and E, respectively, separated by the Upper Reneiche Shale (URS) unit. Reservoir porosity and permeability analyses of the outcrop analogs reveal hybrid pore types (depositional and diagenetic), including intragranular, biomouldic, and vuggy pores, resulting from significant dissolution of large bioclasts. In the northern Gulf of Gabes, the Nummulite barrier of the Reineche Member (SW of the Kerkennah archipelago) demonstrates substantial reservoir quality improvement, with porosity reaching up to 30% in Unit C, attributed to intense dissolution, dolomitization (intercrystalline porosity), and fracturing. Diagenetic processes observed in the Siouf Member (Central Tunisia) differ from those in the Reineche Limestone Member (Pelagian Platform). In the Reineche Member, CO2-rich fluids entering through faults and fissures during deep burial diagenesis drive dissolution and dolomitization. Conversely, in the Siouf Member, these processes occur due to short subaerial exposures during meteoric to shallow-burial diagenesis. A key outcome of our study is the comparison between Central Tunisia and the eastern Tunisian offshore, highlighting local tectonic control on reservoir thickness and identifying three upward-thickening sequences in the Siouf Member outcrop. This research is crucial for understanding the Gulf of Gabes and Libyan offshore nummulitic Eocene reservoirs, emphasizing the role of tectonics and sea level changes in shaping reservoir characteristics.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"95 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Post-stack multi-scale fracture prediction and characterization methods for granite buried hill reservoirs: a case study in the Pearl River Mouth Basin, South China Sea 花岗岩埋藏丘陵储层的叠后多尺度断裂预测和表征方法:南海珠江口盆地案例研究
IF 2.9 3区 地球科学
Frontiers in Earth Science Pub Date : 2024-08-19 DOI: 10.3389/feart.2024.1456122
Junping Liu, Huailai Zhou, Luyao Liao, Cong Niu, Qiuyu Li
{"title":"Post-stack multi-scale fracture prediction and characterization methods for granite buried hill reservoirs: a case study in the Pearl River Mouth Basin, South China Sea","authors":"Junping Liu, Huailai Zhou, Luyao Liao, Cong Niu, Qiuyu Li","doi":"10.3389/feart.2024.1456122","DOIUrl":"https://doi.org/10.3389/feart.2024.1456122","url":null,"abstract":"Granite buried hill oil and gas reservoirs are relatively scarce worldwide, and the fine prediction and characterization of their fractures have always been a significant industry challenge. Particularly in the South China Sea region, large and thick granite buried-hill reservoirs are influenced by various geological processes such as weathering and tectonics, resulting in a complex internal fracture system. The seismic reflection characteristics exhibit high steepness, discontinuity, and significant amplitude differences, posing significant difficulties for the fine characterization of fractures. A systematic and comprehensive research approach has not yet been established. Therefore, this study considers the large granite-buried hill A reservoir in the South China Sea as a typical case study and proposes a multi-scale fracture fine prediction and characterization methodology system. The method starts with analyzing the fracture scale and genesis to refine the fracture scales identifiable by conventional seismic data. Based on this, the U-SegNet model and transfer learning are utilized to achieve fine detection of large-scale fractures. Meanwhile, using high-resolution ant tracking technology based on MVMD frequency division and sensitive attribute preferences realizes a fine prediction of medium-to-small-scale fractures. Furthermore, the discrete fracture network is used for fracture deterministic modeling, ranging from geometric morphology to percolation behavior. Ultimately, a post-stack seismic multi-scale fracture prediction and characterization workflow is established. The results indicate that the buried hill in the study area exhibits a high degree of fracture development with evident multi-scale characteristics. Among them, large-scale fractures have a relatively low development density, primarily oriented in the NW and NE directions; medium-to-small-scale fractures exhibit high-density and omnidirectional development. The development of fractures significantly improves the storage space and fluid flow capacity of the buried hill. Compared with traditional methods, the proposed method notably enhances the accuracy of characterizing the degree of fracture development, spatial morphology, and percolation behavior in the buried hill reservoir, providing a scientific basis for oil and gas exploration and development.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"20 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontiers | Shale reservoir characterization and implications for the exploration and development of the upper Permian Wujiaping Formation, Longmen-Wushankan area, eastern Sichuan Basin 四川盆地东部龙门-万山地区上二叠统吴家坪组页岩储层特征及其对勘探开发的影响
IF 2.9 3区 地球科学
Frontiers in Earth Science Pub Date : 2024-08-16 DOI: 10.3389/feart.2024.1453098
Wen Tang, Cong Tuo, Shaoguang Ma, Yongjun Yao, Dongxi Liu, Xinrui Yang, Licheng Yang, Hu Li
{"title":"Frontiers | Shale reservoir characterization and implications for the exploration and development of the upper Permian Wujiaping Formation, Longmen-Wushankan area, eastern Sichuan Basin","authors":"Wen Tang, Cong Tuo, Shaoguang Ma, Yongjun Yao, Dongxi Liu, Xinrui Yang, Licheng Yang, Hu Li","doi":"10.3389/feart.2024.1453098","DOIUrl":"https://doi.org/10.3389/feart.2024.1453098","url":null,"abstract":"Recent exploration efforts have revealed significant industrial gas flow from the Wujiaping Formation marine shale in the Longmen–Wushankan area of the eastern Sichuan Basin, underscoring its considerable exploration potential. In this study, the reservoir characteristics and exploration potential of the Wujiaping Formation shale gas in this area are further evaluated. On the basis of well rock electrical properties, experimental analyses, and depositional and structural patterns in the eastern region, we characterize the reservoir properties and identify the primary factors controlling shale gas accumulation. The results indicate that the Wujiaping shale is characterized by a high organic matter content, favorable pore types, high porosity, and a high content of brittle minerals, which are conducive to subsequent development and fracturing. A positive correlation is observed between the total organic carbon (TOC) content, porosity, brittle mineral content, and shale gas content. The TOC content is strongly correlated with the gas content (the correlation coefficient is 0.75). The high shale gas yield of the Wujiaping Formation is attributed to a combination of favorable sedimentary environments, pore conditions, roof and floor conditions, and fracturing capabilities. However, compared with the Longmaxi Formation in the Sichuan Basin, the Wujiaping Formation shale is characterized by a lower porosity, thinner shale, and deeper burial, posing challenges for exploration and development. In this study, criteria for evaluating Wujiaping Formation shale gas are established, and four favorable exploration areas are identified. Overall, the Permian Wujiaping Formation marine shale in the Longmen–Wushankan area holds promising exploration and development potential. Further exploration and an enhanced understanding of this formation will provide valuable guidance for future marine shale gas exploration and development in this area.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"56 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Late Quaternary activity of Wulashan Northern fault, North China 华北乌拉山北部断层晚第四纪活动
IF 2.9 3区 地球科学
Frontiers in Earth Science Pub Date : 2024-08-16 DOI: 10.3389/feart.2024.1437012
Leihua Wei, Weimin He, Yueren Xu, Yanlin Du, Aopeng Dai, Xiaopeng Song, Shuya Xu, Jingjing Qin
{"title":"Late Quaternary activity of Wulashan Northern fault, North China","authors":"Leihua Wei, Weimin He, Yueren Xu, Yanlin Du, Aopeng Dai, Xiaopeng Song, Shuya Xu, Jingjing Qin","doi":"10.3389/feart.2024.1437012","DOIUrl":"https://doi.org/10.3389/feart.2024.1437012","url":null,"abstract":"The Late Quaternary activity characteristics of secondary faults located between the main active faults at the boundaries of large basins are of great significance to the overall understanding of regional seismic hazards. The Wulashan Northern Fault (WNF) is located on the northern side of the Ordos Block, within the Northern Margin Fault Basin in North China, between the Sertengshan Piedmont Fault and Daqingshan Piedmont Fault. Current research on the geometry and kinematics of the WNF needs to be improved. In this study, we aimed to determine the shallow structural characteristics and Late Quaternary activity of the WNF using shallow seismic exploration and composite drilling geological cross-sectional analysis. The results indicate that the WNF is not a single surface fault but multiple branches with a northward-dipping stepped surface distribution. The latest activity of the F1 branch with a maximum coseismic vertical dislocation of 0.9 m occurred before 47.08 ± 3.7 ka B.P. The latest and older activities of the branch of F2 with a maximum coseismic vertical dislocation of 0.96 m and 1.15 m occurred before 73.8 ± 2.8 ka B.P. and 91.2 ± 4.4 ka B.P., respectively. According to a series of empirical relationships between length of surface rupture and magnitude, the maximum potential magnitude of the earthquake was determined to be <jats:italic>M</jats:italic> = 6.5–7.0. We argue that even though the Late Quaternary activity of the WNF was weaker than that of the other boundary faults of the Hetao Basin, the local urban and rural planning and land and resources construction in the Hetao Basin region should pay attention to the seismic risk of the WNF as an independent section in the future for the effect of secular tectonic loading.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"170 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信