Jihede Haj Messaoud, Nicolas Thibault, Brahimsamba Bomou, Thierry Adatte, Mohammed H. Aljahdali, Chokri Yaich
{"title":"突尼斯中部和东部近海早巴顿期泥质灰岩的地表-地下储层综合分区","authors":"Jihede Haj Messaoud, Nicolas Thibault, Brahimsamba Bomou, Thierry Adatte, Mohammed H. Aljahdali, Chokri Yaich","doi":"10.3389/feart.2024.1452977","DOIUrl":null,"url":null,"abstract":"The Early Bartonian Reneiche/Siouf member is one of the primary conventional carbonate oil/gas reservoirs to be assessed in Tunisia that demands detailed evaluation. Accurate zonation and modeling of this reservoir require an integrated approach combining surface and subsurface studies. This research focuses on the depositional, diagenetic, and stratigraphic factors affecting reservoir quality and porosity within the Reneiche/Siouf member, utilizing an integrated surface-subsurface analysis. The primary aim is to understand the reservoir zonation of the Reineche Member near Kerkennah archipelago (eastern Tunisian offshore) and its lateral equivalents in central Tunisia the Siouf Member (outcrop analogue). Gamma-ray and sonic logs from the Reineche Member in the southern and southeastern Pelagian Platform (Tunisian offshore) identify three distinct limestone units (A, C, and E). These units transition into a single mud-dominated limestone unit (C) to the east and northeast of the Kerkennah archipelago. In contrast, the western Pelagian Platform (onshore) and Central Tunisia present a different stratigraphy for the Reineche/Siouf Member, comprising two limestone units: the Lower Reneiche Limestone (LRL) and the Upper Reneiche Limestone (URL), corresponding to Units C and E, respectively, separated by the Upper Reneiche Shale (URS) unit. Reservoir porosity and permeability analyses of the outcrop analogs reveal hybrid pore types (depositional and diagenetic), including intragranular, biomouldic, and vuggy pores, resulting from significant dissolution of large bioclasts. In the northern Gulf of Gabes, the Nummulite barrier of the Reineche Member (SW of the Kerkennah archipelago) demonstrates substantial reservoir quality improvement, with porosity reaching up to 30% in Unit C, attributed to intense dissolution, dolomitization (intercrystalline porosity), and fracturing. Diagenetic processes observed in the Siouf Member (Central Tunisia) differ from those in the Reineche Limestone Member (Pelagian Platform). In the Reineche Member, CO2-rich fluids entering through faults and fissures during deep burial diagenesis drive dissolution and dolomitization. Conversely, in the Siouf Member, these processes occur due to short subaerial exposures during meteoric to shallow-burial diagenesis. A key outcome of our study is the comparison between Central Tunisia and the eastern Tunisian offshore, highlighting local tectonic control on reservoir thickness and identifying three upward-thickening sequences in the Siouf Member outcrop. This research is crucial for understanding the Gulf of Gabes and Libyan offshore nummulitic Eocene reservoirs, emphasizing the role of tectonics and sea level changes in shaping reservoir characteristics.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"95 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frontiers | Integrated surface-subsurface reservoir zonation of the Early Bartonian nummulitic limestone in central Tunisia and eastern Tunisian offshore\",\"authors\":\"Jihede Haj Messaoud, Nicolas Thibault, Brahimsamba Bomou, Thierry Adatte, Mohammed H. Aljahdali, Chokri Yaich\",\"doi\":\"10.3389/feart.2024.1452977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Early Bartonian Reneiche/Siouf member is one of the primary conventional carbonate oil/gas reservoirs to be assessed in Tunisia that demands detailed evaluation. Accurate zonation and modeling of this reservoir require an integrated approach combining surface and subsurface studies. This research focuses on the depositional, diagenetic, and stratigraphic factors affecting reservoir quality and porosity within the Reneiche/Siouf member, utilizing an integrated surface-subsurface analysis. The primary aim is to understand the reservoir zonation of the Reineche Member near Kerkennah archipelago (eastern Tunisian offshore) and its lateral equivalents in central Tunisia the Siouf Member (outcrop analogue). Gamma-ray and sonic logs from the Reineche Member in the southern and southeastern Pelagian Platform (Tunisian offshore) identify three distinct limestone units (A, C, and E). These units transition into a single mud-dominated limestone unit (C) to the east and northeast of the Kerkennah archipelago. In contrast, the western Pelagian Platform (onshore) and Central Tunisia present a different stratigraphy for the Reineche/Siouf Member, comprising two limestone units: the Lower Reneiche Limestone (LRL) and the Upper Reneiche Limestone (URL), corresponding to Units C and E, respectively, separated by the Upper Reneiche Shale (URS) unit. Reservoir porosity and permeability analyses of the outcrop analogs reveal hybrid pore types (depositional and diagenetic), including intragranular, biomouldic, and vuggy pores, resulting from significant dissolution of large bioclasts. In the northern Gulf of Gabes, the Nummulite barrier of the Reineche Member (SW of the Kerkennah archipelago) demonstrates substantial reservoir quality improvement, with porosity reaching up to 30% in Unit C, attributed to intense dissolution, dolomitization (intercrystalline porosity), and fracturing. Diagenetic processes observed in the Siouf Member (Central Tunisia) differ from those in the Reineche Limestone Member (Pelagian Platform). In the Reineche Member, CO2-rich fluids entering through faults and fissures during deep burial diagenesis drive dissolution and dolomitization. Conversely, in the Siouf Member, these processes occur due to short subaerial exposures during meteoric to shallow-burial diagenesis. A key outcome of our study is the comparison between Central Tunisia and the eastern Tunisian offshore, highlighting local tectonic control on reservoir thickness and identifying three upward-thickening sequences in the Siouf Member outcrop. This research is crucial for understanding the Gulf of Gabes and Libyan offshore nummulitic Eocene reservoirs, emphasizing the role of tectonics and sea level changes in shaping reservoir characteristics.\",\"PeriodicalId\":12359,\"journal\":{\"name\":\"Frontiers in Earth Science\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3389/feart.2024.1452977\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3389/feart.2024.1452977","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Frontiers | Integrated surface-subsurface reservoir zonation of the Early Bartonian nummulitic limestone in central Tunisia and eastern Tunisian offshore
The Early Bartonian Reneiche/Siouf member is one of the primary conventional carbonate oil/gas reservoirs to be assessed in Tunisia that demands detailed evaluation. Accurate zonation and modeling of this reservoir require an integrated approach combining surface and subsurface studies. This research focuses on the depositional, diagenetic, and stratigraphic factors affecting reservoir quality and porosity within the Reneiche/Siouf member, utilizing an integrated surface-subsurface analysis. The primary aim is to understand the reservoir zonation of the Reineche Member near Kerkennah archipelago (eastern Tunisian offshore) and its lateral equivalents in central Tunisia the Siouf Member (outcrop analogue). Gamma-ray and sonic logs from the Reineche Member in the southern and southeastern Pelagian Platform (Tunisian offshore) identify three distinct limestone units (A, C, and E). These units transition into a single mud-dominated limestone unit (C) to the east and northeast of the Kerkennah archipelago. In contrast, the western Pelagian Platform (onshore) and Central Tunisia present a different stratigraphy for the Reineche/Siouf Member, comprising two limestone units: the Lower Reneiche Limestone (LRL) and the Upper Reneiche Limestone (URL), corresponding to Units C and E, respectively, separated by the Upper Reneiche Shale (URS) unit. Reservoir porosity and permeability analyses of the outcrop analogs reveal hybrid pore types (depositional and diagenetic), including intragranular, biomouldic, and vuggy pores, resulting from significant dissolution of large bioclasts. In the northern Gulf of Gabes, the Nummulite barrier of the Reineche Member (SW of the Kerkennah archipelago) demonstrates substantial reservoir quality improvement, with porosity reaching up to 30% in Unit C, attributed to intense dissolution, dolomitization (intercrystalline porosity), and fracturing. Diagenetic processes observed in the Siouf Member (Central Tunisia) differ from those in the Reineche Limestone Member (Pelagian Platform). In the Reineche Member, CO2-rich fluids entering through faults and fissures during deep burial diagenesis drive dissolution and dolomitization. Conversely, in the Siouf Member, these processes occur due to short subaerial exposures during meteoric to shallow-burial diagenesis. A key outcome of our study is the comparison between Central Tunisia and the eastern Tunisian offshore, highlighting local tectonic control on reservoir thickness and identifying three upward-thickening sequences in the Siouf Member outcrop. This research is crucial for understanding the Gulf of Gabes and Libyan offshore nummulitic Eocene reservoirs, emphasizing the role of tectonics and sea level changes in shaping reservoir characteristics.
期刊介绍:
Frontiers in Earth Science is an open-access journal that aims to bring together and publish on a single platform the best research dedicated to our planet.
This platform hosts the rapidly growing and continuously expanding domains in Earth Science, involving the lithosphere (including the geosciences spectrum), the hydrosphere (including marine geosciences and hydrology, complementing the existing Frontiers journal on Marine Science) and the atmosphere (including meteorology and climatology). As such, Frontiers in Earth Science focuses on the countless processes operating within and among the major spheres constituting our planet. In turn, the understanding of these processes provides the theoretical background to better use the available resources and to face the major environmental challenges (including earthquakes, tsunamis, eruptions, floods, landslides, climate changes, extreme meteorological events): this is where interdependent processes meet, requiring a holistic view to better live on and with our planet.
The journal welcomes outstanding contributions in any domain of Earth Science.
The open-access model developed by Frontiers offers a fast, efficient, timely and dynamic alternative to traditional publication formats. The journal has 20 specialty sections at the first tier, each acting as an independent journal with a full editorial board. The traditional peer-review process is adapted to guarantee fairness and efficiency using a thorough paperless process, with real-time author-reviewer-editor interactions, collaborative reviewer mandates to maximize quality, and reviewer disclosure after article acceptance. While maintaining a rigorous peer-review, this system allows for a process whereby accepted articles are published online on average 90 days after submission.
General Commentary articles as well as Book Reviews in Frontiers in Earth Science are only accepted upon invitation.