Expert Opinion on Therapeutic Patents最新文献

筛选
英文 中文
The challenging inhibition of Aldose Reductase for the treatment of diabetic complications: a 2019-2023 update of the patent literature. 抑制醛糖还原酶治疗糖尿病并发症的挑战:2019-2023 年专利文献更新。
IF 5.4 2区 医学
Expert Opinion on Therapeutic Patents Pub Date : 2024-11-01 Epub Date: 2024-10-11 DOI: 10.1080/13543776.2024.2412573
Bianca Laura Bernardoni, Ilaria D'Agostino, Fabio Scianò, Concettina La Motta
{"title":"The challenging inhibition of Aldose Reductase for the treatment of diabetic complications: a 2019-2023 update of the patent literature.","authors":"Bianca Laura Bernardoni, Ilaria D'Agostino, Fabio Scianò, Concettina La Motta","doi":"10.1080/13543776.2024.2412573","DOIUrl":"10.1080/13543776.2024.2412573","url":null,"abstract":"<p><strong>Introduction: </strong>Aldose reductase (AKR1B1, EC: 1.1.1.21) is a recognized target for the treatment of long-term diabetic complications since its activation in hyperglycemia and role in the polyol pathway. In particular, the tissue-specificity of AKR1B1 expression makes the design of the traditional Aldose Reductase Inhibitors (ARIs) and the more recent Aldose Reductase Differential Inhibitors (ARDIs) exploitable strategies to treat pathologies resulting from diabetic conditions.</p><p><strong>Areas covered: </strong>A brief overview of the roles and functions of AKR1B1 along with known ARIs and ARDIs was provided. Then, the design of the latest inhibitors in the scientific scenario was discussed, aiming at introducing the research achievement in the field of intellectual properties. Patents dealing with AKR1B1 and diabetes filed in the 2019-2023 period were collected and analyzed. Reaxys, Espacenet, SciFinder<sup>n</sup>, and Google Patents were surveyed, using 'aldose reductase' and 'inhibitor' as the reference keywords. The search results were then filtered by PRISMA protocol, thus obtaining 16 records to review.</p><p><strong>Expert opinion: </strong>Although fewer in number than in the early 2000s, patent applications are still being filed in the field of ARIs, with a large number of Chinese inventors reporting new synthetic ARIs in favor of the repositioning approach.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"1085-1103"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic compounds targeting interleukin-1 receptor-associated kinase 4 (IRAK4): an updated patent review (2019 to present). 针对白细胞介素-1受体相关激酶4(IRAK4)的治疗化合物:最新专利回顾(2019年至今)。
IF 5.4 2区 医学
Expert Opinion on Therapeutic Patents Pub Date : 2024-11-01 Epub Date: 2024-11-05 DOI: 10.1080/13543776.2024.2406825
Fei Xiang
{"title":"Therapeutic compounds targeting interleukin-1 receptor-associated kinase 4 (IRAK4): an updated patent review (2019 to present).","authors":"Fei Xiang","doi":"10.1080/13543776.2024.2406825","DOIUrl":"10.1080/13543776.2024.2406825","url":null,"abstract":"<p><strong>Background: </strong>It is more than two decades since IRAK4, a promising target for therapies against various medical conditions, was first reported, but no compounds targeting this enzyme are active on the market or under late-stage clinical development. So it is necessary to continue exploring new and/or improved chemotypes for IRAK4-targeting compounds, to which updated patent reviews are supposed to be of considerable contribution.</p><p><strong>Areas covered: </strong>PCT patents claiming IRAK4-targeting compounds and published through 2019 to present were retrieved, screened and reviewed for the title compounds disclosed therein, where chemotype-specific strategies were adopted for the said reviewing process. Included patents featuring non-Protac compounds were described in terms of generic formulas and variable-indicated moieties of the title compounds, as well as selected title compounds and relevant prior documents. Included patents featuring Protac-based compounds were described in terms of general examples of IRAK-binding moieties and ligase-binding moieties, as well as the presence of conventional linker types. Insights were finally extracted from the patent review.</p><p><strong>Expert opinion: </strong>The last five years has seen a steady increase in the number of PCT patents claiming IRAK4-targeting therapeutic compounds, with some of them being based on new chemotypes and/or discovered by new organizations as potential new players.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"1137-1166"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ectonucleotidase inhibitors: an updated patent review (2017-2023). 外显子核苷酸酶抑制剂:最新专利综述(2017-2023 年)。
IF 5.4 2区 医学
Expert Opinion on Therapeutic Patents Pub Date : 2024-11-01 Epub Date: 2024-10-30 DOI: 10.1080/13543776.2024.2423023
Jamshed Iqbal, Sehrish Bano, Imtiaz Ali Khan, Jean Sévigny, Qing Huang
{"title":"Ectonucleotidase inhibitors: an updated patent review (2017-2023).","authors":"Jamshed Iqbal, Sehrish Bano, Imtiaz Ali Khan, Jean Sévigny, Qing Huang","doi":"10.1080/13543776.2024.2423023","DOIUrl":"10.1080/13543776.2024.2423023","url":null,"abstract":"<p><strong>Introduction: </strong>The main enzymes that hydrolyzes nucleotides at the cell surface are nucleoside triphosphate diphosphohydrolases (NTPDases), ecto-nucleotide pyrophosphatases/phosphodiesterases (ENPPs), alkaline phosphatases (APs) and ecto-5'- nucleotidase (e5'NT, CD73) and by regulating the concentration of nucleotides at the cell surface, these enzymes have the potential to affect various conditions such as fibrosis, cancer metastasis, pruritus, inflammation, and autoimmune diseases. Thus, they represent a prospective therapeutic target.</p><p><strong>Area covered: </strong>A number of molecules, including nucleoside/nucleotide and non-nucleoside analogues, and bicyclic compounds, have shown strong potential as ectonucleotidase inhibitors. This review covers the chemistry and clinical uses of ectonucleotidase inhibitors patented between 2017 and 2023.</p><p><strong>Expert opinion: </strong>By binding to their specific P1 and P2 receptors at the cell surface, nucleosides and nucleotides regulate a number of pathophysiological events such as inflammation, fibrosis, cancer, and autoimmune diseases. Interestingly, these nucleotides can be hydrolyzed to nucleosides by several cell surface enzymes called ectonucleotidases. The development of small molecules that modulate ectonucleotidase activity is, therefore, of therapeutic value. This review provides valuable insights into recent advancements, including combination therapy and enhanced selectivity, which are poised to shape the future of ectonucleotidase inhibition through a comprehensive analysis of patents.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"1167-1176"},"PeriodicalIF":5.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Update on JNK inhibitor patents: 2015 to present. JNK 抑制剂专利更新:2015 年至今。
IF 5.4 2区 医学
Expert Opinion on Therapeutic Patents Pub Date : 2024-10-01 Epub Date: 2024-09-08 DOI: 10.1080/13543776.2024.2400167
Guotai Feng, Xiao Yang, Wen Shuai, Guan Wang, Liang Ouyang
{"title":"Update on JNK inhibitor patents: 2015 to present.","authors":"Guotai Feng, Xiao Yang, Wen Shuai, Guan Wang, Liang Ouyang","doi":"10.1080/13543776.2024.2400167","DOIUrl":"10.1080/13543776.2024.2400167","url":null,"abstract":"<p><strong>Introduction: </strong>c-Jun N-terminal kinase (JNK) regulates various biological processes through the phosphorylation cascade and is closely associated with numerous diseases, including inflammation, cardiovascular diseases, and neurological disorders. Therefore, JNKs have emerged as potential targets for disease treatment.</p><p><strong>Areas covered: </strong>This review compiles the patents and literatures concerning JNK inhibitors through retrieving relevant information from the SciFinder, Google Patents databases, and PubMed from 2015 to the present. It summarizes the structure-activity relationship (SAR) and biological activity profiles of JNK inhibitors, offering valuable perspectives on their potential therapeutic applications.</p><p><strong>Expert opinion: </strong>The JNK kinase serves as a novel target for the treatment of neurodegenerative disorders, pulmonary fibrosis, and other illnesses. A variety of small-molecule inhibitors targeting JNKs have demonstrated promising therapeutic potential in preclinical studies, which act upon JNK kinases via distinct mechanisms, encompassing traditional ATP competitive inhibition, covalent inhibition, and bidentate inhibition. Among them, several JNK inhibitors from PregLem SA, Celegene SA, and Xigen SA have accomplished the early stage of clinical trials, and their results will guide the development and indications of future JNK inhibitors.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"907-927"},"PeriodicalIF":5.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A patent review of histone deacetylase 8 (HDAC8) inhibitors (2013-present). 组蛋白去乙酰化酶 8 (HDAC8) 抑制剂专利回顾(2013 年至今)。
IF 5.4 2区 医学
Expert Opinion on Therapeutic Patents Pub Date : 2024-10-01 Epub Date: 2024-08-20 DOI: 10.1080/13543776.2024.2391289
Suvankar Banerjee, Balaram Ghosh, Tarun Jha, Nilanjan Adhikari
{"title":"A patent review of histone deacetylase 8 (HDAC8) inhibitors (2013-present).","authors":"Suvankar Banerjee, Balaram Ghosh, Tarun Jha, Nilanjan Adhikari","doi":"10.1080/13543776.2024.2391289","DOIUrl":"10.1080/13543776.2024.2391289","url":null,"abstract":"<p><strong>Introduction: </strong>The processes and course of several fatal illnesses, such as cancer, inflammatory diseases, and neurological disorders are closely correlated with HDAC8. Therefore, novel HDAC8 inhibitors represent effective therapeutic possibilities that may help treat these conditions. To yet, there are not any such particular HDAC8 inhibitors available for sale. This review was conducted to examine recent HDAC8 inhibitors that have been patented over the last 10 years.</p><p><strong>Areas covered: </strong>This review focuses on HDAC8 inhibitor-related patents and their therapeutic applications that have been published within the last 10 years and are accessible through the Patentscope and Google Patents databases.</p><p><strong>Expert opinion: </strong>A handful of HDAC8 inhibitor-related patents have been submitted over the previous 10 years, more selective, and specific HDAC8 inhibitors that are intended to treat a variety of medical diseases. This could lead to the development of novel treatment approaches that target HDAC8. Employing theoretical frameworks and experimental procedures can reveal the creation of new HDAC8 inhibitors with enhanced pharmacokinetic characteristics. A thorough understanding of the role that HDAC8 inhibitors play in cancer, including the mechanisms behind HDAC8 in other disorders is necessary.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"1019-1045"},"PeriodicalIF":5.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141909834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tetrahydroisoquinolines - an updated patent review for cancer treatment (2016 - present). 四氢异喹啉类化合物--用于癌症治疗的最新专利回顾(2016 年至今)。
IF 5.4 2区 医学
Expert Opinion on Therapeutic Patents Pub Date : 2024-10-01 Epub Date: 2024-08-19 DOI: 10.1080/13543776.2024.2391288
Ankur Kumar Tanwar, Neha Sengar, Nobuyuki Mase, Inder Pal Singh
{"title":"Tetrahydroisoquinolines - an updated patent review for cancer treatment (2016 - present).","authors":"Ankur Kumar Tanwar, Neha Sengar, Nobuyuki Mase, Inder Pal Singh","doi":"10.1080/13543776.2024.2391288","DOIUrl":"10.1080/13543776.2024.2391288","url":null,"abstract":"<p><strong>Introduction: </strong>Cancer is a prominent cause of death globally, triggered by both non-genetic and genetic alterations in genes influenced by various environmental factors. The tetrahydroisoquinoline (THIQ), specifically 1,2,3,4-tetrahydroisoquinoline serves as fundamental element in various alkaloids, prevalent in proximity to quinoline and indole alkaloids.</p><p><strong>Area covered: </strong>In this review, the therapeutic applications of THIQ derivatives as an anticancer agent from 2016 to 2024 have been examined. The patents were gathered through comprehensive searches of the Espacenet, Google patent, WIPO, and Sci Finder databases. The therapeutic areas encompassed in the patents include numerous targets of cancer.</p><p><strong>Expert opinion: </strong>THIQ analogues play a crucial role in medicinal chemistry, with many being integral to pharmacological processes and clinical trials. Numerous THIQ compounds have been synthesized for therapeutic purposes, notably in cancer treatment. They show great promise for developing anticancer drugs, demonstrating strong affinity and efficacy against various cancer targets. The creation of multi-target ligands is a compelling avenue for THIQ-based anticancer drug discovery.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"873-906"},"PeriodicalIF":5.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141912373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trends in covalent drug discovery: a 2020-23 patent landscape analysis focused on select covalent reacting groups (CRGs) found in FDA-approved drugs. 共价药物发现的趋势:2020-23 年专利状况分析,重点关注 FDA 批准药物中发现的部分共价反应基团 (CRG)。
IF 5.4 2区 医学
Expert Opinion on Therapeutic Patents Pub Date : 2024-10-01 Epub Date: 2024-09-11 DOI: 10.1080/13543776.2024.2400175
Jan Felix Scholtes, Cristobal Alhambra, Philip A Carpino
{"title":"Trends in covalent drug discovery: a 2020-23 patent landscape analysis focused on select covalent reacting groups (CRGs) found in FDA-approved drugs.","authors":"Jan Felix Scholtes, Cristobal Alhambra, Philip A Carpino","doi":"10.1080/13543776.2024.2400175","DOIUrl":"10.1080/13543776.2024.2400175","url":null,"abstract":"<p><strong>Introduction: </strong>Covalent drugs contain electrophilic groups that can react with nucleophilic amino acids located in the active sites of proteins, particularly enzymes. Recently, there has been considerable interest in using covalent drugs to target non-catalytic amino acids in proteins to modulate difficult targets (i.e. targeted covalent inhibitors). Covalent compounds contain a wide variety of covalent reacting groups (CRGs), but only a few of these CRGs are present in FDA-approved covalent drugs.</p><p><strong>Areas covered: </strong>This review summarizes a 2020-23 patent landscape analysis that examined trends in the field of covalent drug discovery around targets and organizations. The analysis focused on patent applications that were submitted to the World International Patent Organization and selected using a combination of keywords and structural searches based on CRGs present in FDA-approved drugs.</p><p><strong>Expert opinion: </strong>A total of 707 patent applications from >300 organizations were identified, disclosing compounds that acted at 71 targets. Patent application counts for five targets accounted for ~63% of the total counts (i.e. BTK, EGFR, FGFR, KRAS, and SARS-CoV-2 Mpro). The organization with the largest number of patent counts was an academic institution (Dana-Farber Cancer Institute). For one target, KRAS G12C, the discovery of new drugs was highly competitive (>100 organizations, 186 patent applications).</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"843-861"},"PeriodicalIF":5.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyruvate kinase modulators as a therapy target: an updated patent review 2018-2023. 作为治疗靶点的丙酮酸激酶调节剂:2018-2023年最新专利回顾。
IF 5.4 2区 医学
Expert Opinion on Therapeutic Patents Pub Date : 2024-10-01 Epub Date: 2024-09-20 DOI: 10.1080/13543776.2024.2403616
Sevki Adem, Azhar Rasul, Saba Riaz, Ayesha Sadiqa, Matloob Ahmad, Muhammad Shahid Nazir, Mudassir Hassan
{"title":"Pyruvate kinase modulators as a therapy target: an updated patent review 2018-2023.","authors":"Sevki Adem, Azhar Rasul, Saba Riaz, Ayesha Sadiqa, Matloob Ahmad, Muhammad Shahid Nazir, Mudassir Hassan","doi":"10.1080/13543776.2024.2403616","DOIUrl":"10.1080/13543776.2024.2403616","url":null,"abstract":"<p><strong>Introduction: </strong>Cancer cells adopt a glycolytic phenotype to fulfill their energy needs in unfavorable conditions. In metabolic rewiring, cancer cells upregulate the expression of glycolytic pathway regulators including glucose transporter 1, hexokinase 2, and PKM2 (pyruvate kinase) into its M2 splice form. Among these regulators, PKM2 plays a major role in metabolic reprogramming and is overexpressed in various diseases, including cancer. Dimerization of PKM2 causes the generation of synthetic precursors from glycolytic intermediates, which are essential for cellular growth and cancer cell proliferation.</p><p><strong>Covered areas: </strong>This article is focused on examining recent patents (2018-2023) on PKM2 activators, inhibitors and their biological and synthesis properties by using the advanced search service of the European Patent Office (EPO). Moreover, other databases including PubMed, Google Scholar and Elsevier were also examined for scientific data. On basis of their chemical structures, PKM2 activators and inhibitors are classified into pyrazole, pyrolidine-pyrazole, phenol, benzoxazine, isoselenazolo-pyridinium, phthalazine, and propiolylamide derivatives.</p><p><strong>Expert opinion: </strong>Activating PKM2 reduces proliferation and development of cells by reducing the quantity of biomolecules needed for cell formation. PKM2 activators and inhibitors are highly effective in treating many cancer pathogens. It is important to find new, more potent and selective molecules for PKM2 activation and inhibition.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"953-962"},"PeriodicalIF":5.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An updated patent review of BRD4 degraders. BRD4 降解剂的最新专利回顾。
IF 5.4 2区 医学
Expert Opinion on Therapeutic Patents Pub Date : 2024-10-01 Epub Date: 2024-09-04 DOI: 10.1080/13543776.2024.2400166
Zonghui Ma, Cun Zhang, Andrew A Bolinger, Jia Zhou
{"title":"An updated patent review of BRD4 degraders.","authors":"Zonghui Ma, Cun Zhang, Andrew A Bolinger, Jia Zhou","doi":"10.1080/13543776.2024.2400166","DOIUrl":"10.1080/13543776.2024.2400166","url":null,"abstract":"<p><strong>Introduction: </strong>Bromodomain-containing protein 4 (BRD4), an important epigenetic reader, is closely associated with the pathogenesis and development of many diseases, including various cancers, inflammation, and infectious diseases. Targeting BRD4 inhibition or protein elimination with small molecules represents a promising therapeutic strategy, particularly for cancer therapy.</p><p><strong>Areas covered: </strong>The recent advances of patented BRD4 degraders were summarized. The challenges, opportunities, and future directions for developing novel potent and selective BRD4 degraders are also discussed. The patents of BRD4 degraders were searched using the SciFinder and Cortellis Drug Discovery Intelligence database.</p><p><strong>Expert opinion: </strong>BRD4 degraders exhibit superior efficacy and selectivity to BRD4 inhibitors, given their unique mechanism of protein degradation instead of protein inhibition. Excitingly, RNK05047 is now in phase I/II clinical trials, indicating that selective BRD4 protein degradation may offer a viable therapeutic strategy, particularly for cancer. Targeting BRD4 with small-molecule degraders provides a promising approach with the potential to overcome therapeutic resistance for treating various BRD4-associated diseases.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"929-951"},"PeriodicalIF":5.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Caspase inhibitors: a review on recently patented compounds (2016-2023). Caspase抑制剂:最新专利化合物综述(2016-2023年)。
IF 5.4 2区 医学
Expert Opinion on Therapeutic Patents Pub Date : 2024-10-01 Epub Date: 2024-08-29 DOI: 10.1080/13543776.2024.2397732
Shivani Kasana, Shivam Kumar, Preeti Patel, Balak Das Kurmi, Shweta Jain, Sanjeev Sahu, Ankur Vaidya
{"title":"Caspase inhibitors: a review on recently patented compounds (2016-2023).","authors":"Shivani Kasana, Shivam Kumar, Preeti Patel, Balak Das Kurmi, Shweta Jain, Sanjeev Sahu, Ankur Vaidya","doi":"10.1080/13543776.2024.2397732","DOIUrl":"10.1080/13543776.2024.2397732","url":null,"abstract":"<p><strong>Introduction: </strong>Caspases are a family of protease enzymes that play a crucial role in apoptosis. Dysregulation of caspase activity has been implicated in various pathological conditions, making caspases an important focus of research in understanding cell death mechanisms and developing therapeutic strategies for diseases associated with abnormal apoptosis.</p><p><strong>Areas covered: </strong>It is a comprehensive review of caspase inhibitors that have been comprising recently granted patents from 2016 to 2023. It includes peptide and non-peptide caspase inhibitors with their application for different diseases.</p><p><strong>Expert opinion: </strong>This review categorizes and analyses recently patented caspase inhibitors on various diseases. Diseases linked to caspase dysregulation, including neurodegenerative disorders, and autoimmune conditions, are highlighted to accentuate the therapeutic relevance of the patented caspase inhibitors. This paper serves as a valuable resource for researchers, clinicians, and pharmaceutical developers seeking an up-to-date understanding of recently patented caspase inhibitors. The integration of recent patented compounds, structural insights, and mechanistic details provides a holistic view of the progress in caspase inhibitor research and its potential impact on addressing various diseases.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"1047-1072"},"PeriodicalIF":5.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信