{"title":"A patent review of CXCR7 modulators (2019-present).","authors":"Thanigaimalai Pillaiyar, Stefan Laufer","doi":"10.1080/13543776.2025.2477475","DOIUrl":"10.1080/13543776.2025.2477475","url":null,"abstract":"<p><strong>Introduction: </strong>Atypical chemokine receptor 3 (ACKR3) (formerly CXCR7) regulates various biological processes through its ligands and is closely associated with numerous diseases, including inflammation, cancer, cardiovascular diseases (CVDs), pain, and neurological disorders. Therefore, ACKR3 has emerged as a potential target for disease treatment.</p><p><strong>Areas covered: </strong>This review summarizes the ACKR3 modulators published in patents from 2019 to 2024 using data from Google Patents, the European Patent Office, and the World Intellectual Property Organization's online databases. This includes information on their chemical structures, syntheses, activities, and developmental stages.</p><p><strong>Expert opinion: </strong>ACKR3 agonists gained traction as a treatment for cardiovascular and pain conditions. WW-12, which was derived from the chemical modifications of conolidine, became a novel small-molecule pain modulator by activating ACKR3, which in turn boosted endogenous opioid peptides for the classical opioid receptors.ACKR3 antagonist ACT-1004-1239 from Idorsia Pharmaceuticals Ltd. has demonstrated the ability to treat cancer, acute lung injury/ARDS, and autoimmune diseases, including multiple sclerosis. The outcomes of these clinical trials will direct the development and indications of future ACKR3 modulators.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"1-27"},"PeriodicalIF":5.4,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143691626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Challenges, opportunities, and therapeutic potential of JAK inhibitors and their derived PROTACs (2022 - 2023).","authors":"Rishi R Shah","doi":"10.1080/13543776.2025.2477486","DOIUrl":"10.1080/13543776.2025.2477486","url":null,"abstract":"<p><strong>Introduction: </strong>Since the approval of the first JAK inhibitor, ruxolitinib, in 2011, the development of JAK inhibitors has expanded significantly, with applications spanning autoimmune diseases, cancer, and inflammatory disorders. This review explores the challenges and therapeutic potential of JAK inhibitors and their evolution into proteolysis-targeting chimeras (PROTACs), which offer novel avenues for selective JAK modulation.</p><p><strong>Areas covered: </strong>This review examines recent advancements in JAK inhibitors, including their mechanism of action, structure activity relationships, clinical applications, and emerging safety concerns. Additionally, PROTAC-based strategies targeting JAK proteins are discussed, highlighting their potential advantages over traditional small-molecule inhibitors. A comprehensive patent literature search was conducted, focusing on publications and patents from 2022 to 2023. Key selection criteria included small-molecule JAK inhibitors and JAK-targeting PROTACs with associated preclinical data.</p><p><strong>Expert opinion: </strong>While JAK inhibitors have transformed the treatment of various diseases, safety concerns, including risks of venous thromboembolism and herpes zoster, pose challenges to their widespread use. The advent of JAK-targeting PROTACs represents a promising strategy to enhance selectivity and mitigate off-target effects. However, further research is needed to optimize their therapeutic potential and establish their clinical viability.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"1-12"},"PeriodicalIF":5.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143582270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ying-Hui Yuan, Jia-Ying Mao, Ji-Fan Yue, Meng-Lan He, Zi Hui, Hang Yin, Jianshe Wang, Xiang-Yang Ye
{"title":"Updated patent review for hematopoietic progenitor kinase (HPK1) inhibitors and degraders (2021-present).","authors":"Ying-Hui Yuan, Jia-Ying Mao, Ji-Fan Yue, Meng-Lan He, Zi Hui, Hang Yin, Jianshe Wang, Xiang-Yang Ye","doi":"10.1080/13543776.2025.2462834","DOIUrl":"10.1080/13543776.2025.2462834","url":null,"abstract":"<p><strong>Introduction: </strong>Hematopoietic progenitor cell kinase (HPK1) is a serine/threonine kinase of MAP4K family. It negatively regulates T cell receptor and B cell signal transduction. The loss of HPK1 kinase function increases the secretion of cytokines and enhances T cell signal transduction, virus clearance and tumor growth inhibition. Therefore, HPK1 is considered as a promising drug target for tumor immunotherapy.</p><p><strong>Area covered: </strong>This article surveys the patents published since 2021 aiming to analyze the structural features of scaffolds and the patent landscape. It also discusses the recent clinical developments and provides perspectives on the challenges and the future directions.</p><p><strong>Expert opinion: </strong>HPK1 kinase is a viable drug target, and there is an increasing number of clinical studies on HPK1 inhibitors. In the clinical research of HPK1 inhibitors, there are mainly two ways: monotherapy and combination therapy. In recent years, HPK1 degraders derived from PROTAC technology have shown promises along with HPK1 inhibitors. It is hopeful that small molecule inhibitors or degraders targeting HPK1 will gain FDA approval for treatment of human diseases in the near future.</p><p><strong>Databases searched and inclusive dates: </strong>A rapid survey of literature reports using keyword 'HPK1' in SciFinder® search engine yielded about 180 papers since 2021.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"387-408"},"PeriodicalIF":5.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143413900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel H O Donovan, Weiping Wang, Jim Sheppeck, Gerjan de Bruin
{"title":"The role of patent analysis in target selection.","authors":"Daniel H O Donovan, Weiping Wang, Jim Sheppeck, Gerjan de Bruin","doi":"10.1080/13543776.2024.2447070","DOIUrl":"10.1080/13543776.2024.2447070","url":null,"abstract":"","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"321-323"},"PeriodicalIF":5.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiaohong Geng, Juanjuan Xu, Chunsheng Du, Deheng Zhang, Yanrui Jin, Jiatong Song, Wenjing Qu, Changnan Zhang, Gaoxing Su, Peifu Jiao
{"title":"Small molecules targeting immune checkpoint proteins for cancer immunotherapy: a patent and literature review (2020-2024).","authors":"Qiaohong Geng, Juanjuan Xu, Chunsheng Du, Deheng Zhang, Yanrui Jin, Jiatong Song, Wenjing Qu, Changnan Zhang, Gaoxing Su, Peifu Jiao","doi":"10.1080/13543776.2025.2462849","DOIUrl":"10.1080/13543776.2025.2462849","url":null,"abstract":"<p><strong>Introduction: </strong>Targeting immune checkpoint proteins (ICPs) via small molecules open a new window for cancer immunotherapy. Herein, we summarize recent advances of small molecules with novel chemical structures targeting ICPs, discusses their anti-tumor efficacies, which are important for the development of novel small molecules for cancer immunotherapy.</p><p><strong>Areas covered: </strong>In this review, the latest patents and literature were gathered through the comprehensive searches in the databases of European Patent Office (EPO), Cortellis Drug Discovery Intelligence (CDDI), PubMed and Web of Science using ICPs and compounds as key words.</p><p><strong>Expert opinion: </strong>To develop novel weapons to fight against cancer, small molecules targeting ICPs including CTLA-4, LAG-3, PD-L1, Siglec-9, TIM-3, TIGIT, and VISTA have been synthesized and evaluated in succession. Chief among them are the small molecules targeting PD-L1, which have been intensively investigated in recent years. Various in vitro assays such as ALPHA, HTRF binding assay, NFAT assay have been successfully developed to screen novel IPCs inhibitors. However, the in vivo assay, for example, using double-humanized PD-1/PD-L1 (hPD-1/hPD-L1) mouse as evaluation model, are seldom reported. Novel pharmacophores with new working mechanisms such as proteolysis targeting chimeras (PROTACs) and peptides are needed to enhance the therapeutic efficacy.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"409-440"},"PeriodicalIF":5.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Patenting perspective on Keap1 inhibitors (2019-2024).","authors":"Yongfu Luo, Ziyu Yang, Yuan Zhang, Shutong Jiang, Jingyu Zhu, Xiangyang Li, Qidong You, Mengchen Lu","doi":"10.1080/13543776.2025.2462844","DOIUrl":"10.1080/13543776.2025.2462844","url":null,"abstract":"<p><strong>Introduction: </strong>Kelch-like ECH-associated protein 1 (Keap1), an E3 ligase negatively regulating the nuclear factor erythroid 2-related factor 2 (Nrf2), has emerged as an auspicious drug target for treating ailments associated with oxidative stress and inflammation. Discovery of Keap1 inhibitors have attracted significant interest.</p><p><strong>Areas covered: </strong>This review covers patents on Keap1 inhibitors from 2019 to 2024, providing a comprehensive analysis of their structural characteristics, optimization strategies, pharmacological properties and clinical progress.</p><p><strong>Expert opinion: </strong>Extensive efforts have been devoted to enhance potency and drug-like properties of Keap1 inhibitors. Strategies such as ROS-cleavable prodrug design, bivalent inhibition and PROTACs are emerging. As the range of drug types and applications expands, Keap1 inhibitors are becoming a sagacious option for disease treating.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"325-356"},"PeriodicalIF":5.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143255208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanfang Chen, Huanmin Zhou, Jiamin Yu, Jing Gao, Shengyu Xue, Hong Ding, Hua Lin, Cheng Luo
{"title":"A patent review of BRD4 inhibitors (2020-present).","authors":"Yanfang Chen, Huanmin Zhou, Jiamin Yu, Jing Gao, Shengyu Xue, Hong Ding, Hua Lin, Cheng Luo","doi":"10.1080/13543776.2025.2463150","DOIUrl":"10.1080/13543776.2025.2463150","url":null,"abstract":"<p><strong>Introduction: </strong>Bromodomain-containing protein 4 (BRD4) stands as a pivotal member within the Bromodomain and Extra-Terminal Domain (BET) family, contributing significantly to epigenetic control and gene expression. Given its association with various cancers, BRD4 emerges as a promising therapeutic target, suggesting a substantial role in the treatment of diverse pathological conditions.</p><p><strong>Areas covered: </strong>The present review is centered on patent applications concerning inhibitors targeting BRD4's bromodomain site, published from 2020 to present. A comprehensive evaluation was conducted on a total of 70 applications. The latest patented studies of BRD4 are summarized by using the keywords 'BRD4' in SciFinder, PubMed, and The lens Patents and databases in the year from 2020 to present.</p><p><strong>Expert opinion: </strong>Despite the substantial progress achieved in the clinical research of numerous BET bromodomain inhibitors, their development remains fraught with challenges. To mitigate the dose-limiting toxicity (DLT) and other clinical adverse effects associated with pan-BET inhibitors, current research efforts are increasingly focus on the development of selective BRD4-BD1 or -BD2 inhibitors. These selective inhibitors exhibit considerable potential as more efficacious candidate drugs, thereby paving the way for novel avenues in both fundamental and translational research within this domain.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"371-386"},"PeriodicalIF":5.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143364208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zafer Sahin, Yesim A Tahirovic, Jiafeng Geng, Lawrence J Wilson, Dennis C Liotta
{"title":"Small molecule and peptide CXCR4 antagonists. A patent review from 2019 to 2024.","authors":"Zafer Sahin, Yesim A Tahirovic, Jiafeng Geng, Lawrence J Wilson, Dennis C Liotta","doi":"10.1080/13543776.2025.2462848","DOIUrl":"10.1080/13543776.2025.2462848","url":null,"abstract":"<p><strong>Introduction: </strong>The chemokine receptor CXCR4 has been under intense study due to the central role it plays in immune system regulation and the pathology of human disease. Although the first CXCR4 drug plerixafor emerged over a decade ago (2007), recently the first peptide (motixafortide, 2023) and the first oral small molecule (mavorixafor, 2024) CXCR4 antagonists became FDA approved.</p><p><strong>Areas covered: </strong>This article describes patent documents published during the period of 2019 through 2024 for both small molecule and peptides. This IP includes few new chemotypes, with most being extensions of existing structural classes. There is also less significant IP covering peptide-based therapeutics than those covering small molecules. Notably, multiple therapeutic uses have also emerged. Patents were searched from SciFinder (CAS) and Google Patents with the term <i>CXCR4 antagonists</i>. Patents were selected according to whether they fit into the classification of small molecules or peptides.</p><p><strong>Expert opinion: </strong>In the last 5 years there has been significant advancement in CXCR4 antagonists as gauged by the FDA approval of two drugs. The search for second and third generation compounds will be the focus of future efforts with new uses and better properties which likely could come from some of the IP described herein.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"357-369"},"PeriodicalIF":5.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sheenagh Grace Aiken, Thomas Grimes, Shonagh Munro, Tryfon Zarganes-Tzitzikas, Nicholas Barrie La Thangue, Paul Edward Brennan
{"title":"A patent review of peptidylarginine deiminase 4 (PAD4) inhibitors (2014-present).","authors":"Sheenagh Grace Aiken, Thomas Grimes, Shonagh Munro, Tryfon Zarganes-Tzitzikas, Nicholas Barrie La Thangue, Paul Edward Brennan","doi":"10.1080/13543776.2025.2484366","DOIUrl":"10.1080/13543776.2025.2484366","url":null,"abstract":"<p><strong>Introduction: </strong>PAD4 mediates the post-translational modification of arginine residues into citrulline which can have profound effects on protein structure, function and interactions. Protein citrullination and neutrophil extracellular trap (NET) formation associated with increased PAD4 activity have been implicated in the development of autoimmune conditions, cardiovascular diseases, neurodegenerative disorders, and cancer. PAD4 inhibitors have been shown to suppress citrullination and NETs formation.</p><p><strong>Areas covered: </strong>This review covers 10 years of industrial drug discovery campaigns reported in 28 patent applications from 10 companies. Cortellis, the World Intellectual Property Organization website, Scopus and SciFinder were used to search the patent literature using the keywords 'PAD4' and 'PAD4 inhibitor.' Most of the reported inhibitors share the same core scaffold with varied decoration of different complexity, including highly functionalized macrocycles, with some in vivo and pharmacokinetic (PK) data reported for selected examples.</p><p><strong>Expert opinion: </strong>Despite PAD4's clear involvement in multiple disease pathways, its detailed mechanism remains insufficiently understood. Selective and potent compounds with improved PK properties have been provided but most research on PAD4 is still at the experimental stage or preclinical development; the most promising is JBI-1044, at the IND stage, while some companies have turned to antibodies despite considerable previous investment in small molecules.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"1-11"},"PeriodicalIF":5.4,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143709185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xintao He, Lu Chen, Shuangshuang Wu, Zhichao Chen, Wufu Zhu, Dan Qiao
{"title":"An updated patent review of antitumor macrocyclic kinase inhibitors (2019 present).","authors":"Xintao He, Lu Chen, Shuangshuang Wu, Zhichao Chen, Wufu Zhu, Dan Qiao","doi":"10.1080/13543776.2025.2484368","DOIUrl":"10.1080/13543776.2025.2484368","url":null,"abstract":"<p><strong>Introduction: </strong>Small molecule kinase inhibitors are crucial in the treatment of tumors, and the development of novel inhibitors is a primary approach to combat the continuous emergence of drug resistance. Macrocyclization has emerged as a cutting-edge strategy to enhance the potency, selectivity, and pharmacokinetic properties of these inhibitors by altering their biological and physicochemical characteristics compared to their acyclic counterparts.</p><p><strong>Areas covered: </strong>The present article provides a comprehensive overview of the recent advancements in macrocyclic small molecule inhibitors and their inhibitory activities against various cancer cells, which have been patented since 2019.</p><p><strong>Expert opinion: </strong>To date, small-molecule kinase inhibitors have demonstrated remarkable therapeutic efficacy in clinical settings. Recent patents have primarily focused on addressing challenges associated with resistance mutations. Despite the significant success achieved in developing selective kinase agents, the identification of new targets and emergence of novel mutations necessitate the development of novel small-molecule inhibitors. Macrocyclic compounds possess distinctive conformational constraints, enhanced inhibitor potency and selectivity, as well as favorable pharmacokinetic properties, rendering them safe, efficient, selective, low-toxicity agents with unique structural characteristic.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"1-15"},"PeriodicalIF":5.4,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143700032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}