ExtremophilesPub Date : 2023-11-14DOI: 10.1007/s00792-023-01322-2
Paulo E A S Câmara, Graciéle C A de Menezes, Fabyano A C Lopes, Thiago da Silva Paiva, Micheline Carvalho-Silva, Peter Convey, Eduardo T Amorim, Luiz H Rosa
{"title":"Investigating non-fungal eukaryotic diversity in snow in the Antarctic Peninsula region using DNA metabarcoding.","authors":"Paulo E A S Câmara, Graciéle C A de Menezes, Fabyano A C Lopes, Thiago da Silva Paiva, Micheline Carvalho-Silva, Peter Convey, Eduardo T Amorim, Luiz H Rosa","doi":"10.1007/s00792-023-01322-2","DOIUrl":"10.1007/s00792-023-01322-2","url":null,"abstract":"<p><p>Snow is a unique microhabitat, despite being a harsh environment, multiple life forms have adapted to survive in it. While algae, bacteria and fungi are dominant microorganisms in Antarctic snow, little is known about other organisms that may be present in this habitat. We used metabarcoding to investigate DNA sequence diversity of non-fungal eukaryotes present in snow obtained from six different sites across the Maritime Antarctica. A total of 20 taxa were assigned to obtained sequences, representing five Kingdoms (Chromista, Protozoa, Viridiplantae and Metazoa) and four phyla (Ciliophora, Cercozoa, Chlorophyta and Cnidaria). The highest diversity indices were detected in Trinity Peninsula followed by Robert Island, Arctowski Peninsula, Deception Island, King George Island and Snow Island. The most abundant assignments were to Trebouxiophyceae, followed by Chlamydomonas nivalis and Chlamidomonadales. No taxa were detected at all sites. Three potentially new records for Antarctica were detected: two Ciliophora (Aspidisca magna and Stokesia sp.) and the green algae Trebouxia potteri. Our data suggested that similarities found between the sites may be more related with snow physicochemical properties rather than geographic proximity or latitude. This study provides new insights into the diversity and distribution of eukaryotic organisms in Antarctic snow.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"28 1","pages":"3"},"PeriodicalIF":2.9,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92153422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lignocellulolytic extremozymes and their biotechnological applications.","authors":"Nikita Sharma, Aditi Agarwal, Ananya Bijoy, Sunidhi Pandit, Rakesh Kumar Sharma","doi":"10.1007/s00792-023-01314-2","DOIUrl":"10.1007/s00792-023-01314-2","url":null,"abstract":"<p><p>Lignocellulolytic enzymes are used in different industrial and environmental processes. The rigorous operating circumstances of these industries, however, might prevent these enzymes from performing as intended. On the other side, extremozymes are enzymes produced by extremophiles that can function in extremely acidic or basic; hot or cold; under high or low salinity conditions. These severe conditions might denature the normal enzymes that are produced by mesophilic microorganisms. The increased stability of these enzymes has been contributed to a number of conformational modifications in their structures. These modifications may result from a few amino acid substitutions, an improved hydrophobic core, the existence of extra ion pairs and salt bridges, an increase in compactness, or an increase in positively charged amino acids. These enzymes are the best option for industrial and bioremediation activities that must be carried out under difficult conditions due to their improved stability. The review, therefore, discusses lignocellulolytic extremozymes, their structure and mechanisms along with industrial and biotechnological applications.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"28 1","pages":"2"},"PeriodicalIF":2.9,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89717600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ExtremophilesPub Date : 2023-10-31DOI: 10.1007/s00792-023-01320-4
Russell H Vreeland, Ya-Ping Sun, Bei-Bei Wang, Jing Hou, Heng-Lin Cui
{"title":"Halorubrum hochsteinianum sp. nov., an ancient haloarchaeon from a natural experiment.","authors":"Russell H Vreeland, Ya-Ping Sun, Bei-Bei Wang, Jing Hou, Heng-Lin Cui","doi":"10.1007/s00792-023-01320-4","DOIUrl":"10.1007/s00792-023-01320-4","url":null,"abstract":"<p><p>A single extremely halophilic strain was isolated from salt brine produced when a fresh water lake flooded a large salt mine located beneath the lake. The water that entered this mine contained less than 0.34 M NaCl, but over time, this sealed brine became saturated by Cenozoic age salt (121-125 million-year BCE). The isolated strain requires at least 1.7 M NaCl for survival and grows optimally in 3.1 M NaCl. Therefore, it could not have survived or been present in the waters that flooded this salt mine. The strain grows at a pH range from 6.5 to 9.0 and has a wide tolerance to temperatures from 25 ℃ to at least 60 ℃. The comparison of 16S rRNA and rpoB' genes revealed that strain 1-13-28<sup>T</sup> is related to Halorubrum tebenquichense DSM 14210<sup>T</sup> showing 98.6% and 98.1% similarities, respectively. Phylogenetic analyses based on 16S rRNA, rpoB' genes and 122 concatenated archaeal genes show that the strain 1-13-28<sup>T</sup> consistently forms a cluster with Halorubrum tebenquichense of the genus Halorubrum. Strain 1-13-28<sup>T</sup> contained sulfated mannosyl glucosyl diether, and the polar lipid profile was identical to those of most Halorubrum species. Based on the overall combination of physiological, phylogenetic, polar lipids and phylogenomic characteristics, strain 1-13-28<sup>T</sup> (= ATCC 700083<sup>T</sup> = CGMCC 1.62627<sup>T</sup>) represents a newly identified species within the genus Halorubrum for which the name Halorubrum hochsteinianum is proposed.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"28 1","pages":"1"},"PeriodicalIF":2.9,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71422181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ExtremophilesPub Date : 2023-10-17DOI: 10.1007/s00792-023-01313-3
Ernesto González, Camila Zuleta, Guiselle Zamora, Nataly Maturana, Belén Ponce, María Virginia Rivero, Alberto Rodríguez, Juan Pablo Soto, Felipe Scott, Álvaro Díaz-Barrera
{"title":"Production of poly (3-hydroxybutyrate) and extracellular polymeric substances from glycerol by the acidophile Acidiphilium cryptum.","authors":"Ernesto González, Camila Zuleta, Guiselle Zamora, Nataly Maturana, Belén Ponce, María Virginia Rivero, Alberto Rodríguez, Juan Pablo Soto, Felipe Scott, Álvaro Díaz-Barrera","doi":"10.1007/s00792-023-01313-3","DOIUrl":"10.1007/s00792-023-01313-3","url":null,"abstract":"<p><p>Acidiphilium cryptum is an acidophilic, heterotrophic, and metallotolerant bacteria able to use dissolved oxygen or Fe(III) as an electron sink. The ability of this extremophile to accumulate poly(3-hydroxybutyrate) (PHB) and secrete extracellular polymeric substances (EPS) has also been reported. Hence, the aim of this work is to characterize the production of PHB and EPS by the wild strain DSM2389 using glycerol in shaken flasks and bioreactor. Results showed that maximum PHB accumulation (37-42% w/w) was obtained using glycerol concentrations of 9 and 15 g L<sup>-1</sup>, where maximum dry cell weight titers reached 3.6 and 3.9 g L<sup>-1</sup>, respectively. The culture in the bioreactor showed that PHB accumulation takes place under oxygen limitation, while the redox potential of the culture medium could be used for online monitoring of the PHB production. Recovered EPS was analyzed by Fourier-transform infrared spectroscopy and subjected to gas chromatography-mass spectrometry after cleavage and derivatization steps. These analyses showed the presence of sugars which were identified as mannose, rhamnose and glucose, in a proportion near to 3.2:2.3:1, respectively. Since glycerol had not been used in previous works, these findings suggest the potential of A. cryptum to produce biopolymers from this compound at a large scale with a low risk of microbial contamination due to the low pH of the fermentation process.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"27 3","pages":"30"},"PeriodicalIF":2.9,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41233754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ExtremophilesPub Date : 2023-10-17DOI: 10.1007/s00792-023-01317-z
Edgar D Páez-Pérez, Araceli Hernández-Sánchez, Elvia Alfaro-Saldaña, J Viridiana García-Meza
{"title":"Disorder and amino acid composition in proteins: their potential role in the adaptation of extracellular pilins to the acidic media, where Acidithiobacillus thiooxidans grows.","authors":"Edgar D Páez-Pérez, Araceli Hernández-Sánchez, Elvia Alfaro-Saldaña, J Viridiana García-Meza","doi":"10.1007/s00792-023-01317-z","DOIUrl":"10.1007/s00792-023-01317-z","url":null,"abstract":"<p><p>There are few biophysical studies or structural characterizations of the type IV pilin system of extremophile bacteria, such as the acidophilic Acidithiobacillus thiooxidans. We set out to analyze their pili-comprising proteins, pilins, because these extracellular proteins are in constant interaction with protons of the acidic medium in which At. thiooxidans grows. We used the web server Operon Mapper to analyze and identify the cluster codified by the minor pilin of At. thiooxidans. In addition, we carried an in-silico characterization of such pilins using the VL-XT algorithm of PONDR® server. Our results showed that structural disorder prevails more in pilins of At. thiooxidans than in non-acidophilic bacteria. Further computational characterization showed that the pilins of At. thiooxidans are significantly enriched in hydroxy (serine and threonine) and amide (glutamine and asparagine) residues, and significantly reduced in charged residues (aspartic acid, glutamic acid, arginine and lysine). Similar results were obtained when comparing pilins from other Acidithiobacillus and other acidophilic bacteria from another genus versus neutrophilic bacteria, suggesting that these properties are intrinsic to pilins from acidic environments, most likely by maintaining solubility and stability in harsh conditions. These results give guidelines for the application of extracellular proteins of acidophiles in protein engineering.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"27 3","pages":"31"},"PeriodicalIF":2.9,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41233752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ExtremophilesPub Date : 2023-10-17DOI: 10.1007/s00792-023-01315-1
Levon Markosyan, Arevik Vardanyan
{"title":"Properties of the extracellular alkaline inulinase produced by haloalkaliphilic phototrophic bacteria Ectothiorodospirea mobilis.","authors":"Levon Markosyan, Arevik Vardanyan","doi":"10.1007/s00792-023-01315-1","DOIUrl":"10.1007/s00792-023-01315-1","url":null,"abstract":"<p><p>The studies have revealed alkaline exoinulinase produced by haloalkaliphilic phototrophic bacteria Ectothiorhodospirea mobilis Al-2 for the first time. A new method for the isolation of a homogeneous exoinulinase from the culture broth was developed and the properties of this enzyme have been investigated. It was shown that specified exoinulinase in contrast to the studied exoinulinases produced by microorganisms exhibits catalytic activity at the wide range of pH (7.0-10) and a temperature (20-60 °C) with a maximum of the inulolitic activity at pH 9.0 and 50 °C. The studied exoinulinase possessing also invertase activity (I/S1.4) is a monomeric protein with molecular mass 57Kda, as well as Km and Vmax for inulin 3.8 mM/ml and 10 µmol/ml/min<sup>-1</sup>, respectively. The studies of the influence of different metal ions on enzyme activity have shown that Mn<sup>+2</sup>, Cu<sup>+2</sup>, Co<sup>+2</sup>, Mg<sup>+2</sup>, NaCl 5-7% promote relatively higher catalytic activity while Zn<sup>+2</sup>, Cu<sup>+2</sup> and Fe<sup>+2</sup> partially suppress the enzyme activity and Hg<sup>2+</sup>completely inactivates the enzyme.The formation of only fructose and glucose at the enzymatic hydrolysis of inulin confirms that the studied exoinulinase belongs to the exo-type of enzymes. The obtained results supplement our fundamental knowledge in biochemistry-enzymology, as well as the biodiversity of microorganisms expressing exoinulinase. The studied exoinulinase exhibits activity at salinity of the medium and can potentially be used in the biotechnology of inulin bioconversion into bioproducts under alkaline conditions.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"27 3","pages":"29"},"PeriodicalIF":2.9,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41233755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pyrofollis japonicus gen. nov. sp. nov., a novel member of the family Pyrodictiaceae isolated from the Iheya North hydrothermal field.","authors":"Urara Miyazaki, Masaru Sanari, Akihiro Tame, Masaaki Kitajima, Akihiro Okamoto, Shigeki Sawayama, Junichi Miyazaki, Ken Takai, Satoshi Nakagawa","doi":"10.1007/s00792-023-01316-0","DOIUrl":"10.1007/s00792-023-01316-0","url":null,"abstract":"<p><p>A novel hyperthermophilic, heterotrophic archaeon, strain YC29<sup>T</sup>, was isolated from a deep-sea hydrothermal vent in the Mid-Okinawa Trough, Japan. Cells of strain YC29<sup>T</sup> were non-motile, irregular cocci with diameters of 1.2-3.0 µm. The strain was an obligatory fermentative anaerobe capable of growth on complex proteinaceous substrates. Growth was observed between 85 and 100 °C (optimum 90-95 °C), pH 4.9-6.4 (optimum 5.1), and in the presence of 1.4-4.0% (w/v) NaCl (optimum 3.0%). Inorganic carbon was required as a carbon source. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate was a member of the family Pyrodictiaceae. The genome size was 2.02 Mbp with a G+C content of 49.4%. The maximum values for average nucleotide identity (ANI), average amino acid identity (AAI), and in silico DNA-DNA hybridization (dDDH) value of strain YC29<sup>T</sup> with relatives were 67.9% (with Pyrodictium abyssi strain AV2<sup>T</sup>), 61.1% (with Pyrodictium occultum strain PL-19<sup>T</sup>), and 33.8% (with Pyrolobus fumarii strain 1A<sup>T</sup>), respectively. Based on the phylogenetic, genomic, and phenotypic characteristics, we propose that strain YC29<sup>T</sup> represents a novel genus and species, Pyrofollis japonicus gen. nov., sp. (type strain YC29<sup>T</sup> = DSM 113394<sup>T</sup> = JCM 39171<sup>T</sup>).</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"27 3","pages":"28"},"PeriodicalIF":2.9,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41233756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ExtremophilesPub Date : 2023-10-15DOI: 10.1007/s00792-023-01312-4
Sarah Jane Butterworth, Franky Barton, Jonathan Richard Lloyd
{"title":"Extremophilic microbial metabolism and radioactive waste disposal.","authors":"Sarah Jane Butterworth, Franky Barton, Jonathan Richard Lloyd","doi":"10.1007/s00792-023-01312-4","DOIUrl":"10.1007/s00792-023-01312-4","url":null,"abstract":"<p><p>Decades of nuclear activities have left a legacy of hazardous radioactive waste, which must be isolated from the biosphere for over 100,000 years. The preferred option for safe waste disposal is a deep subsurface geological disposal facility (GDF). Due to the very long geological timescales required, and the complexity of materials to be disposed of (including a wide range of nutrients and electron donors/acceptors) microbial activity will likely play a pivotal role in the safe operation of these mega-facilities. A GDF environment provides many metabolic challenges to microbes that may inhabit the facility, including high temperature, pressure, radiation, alkalinity, and salinity, depending on the specific disposal concept employed. However, as our understanding of the boundaries of life is continuously challenged and expanded by the discovery of novel extremophiles in Earth's most inhospitable environments, it is becoming clear that microorganisms must be considered in GDF safety cases to ensure accurate predictions of long-term performance. This review explores extremophilic adaptations and how this knowledge can be applied to challenge our current assumptions on microbial activity in GDF environments. We conclude that regardless of concept, a GDF will consist of multiple extremes and it is of high importance to understand the limits of polyextremophiles under realistic environmental conditions.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"27 3","pages":"27"},"PeriodicalIF":2.9,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41233753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ExtremophilesPub Date : 2023-09-15DOI: 10.1007/s00792-023-01309-z
Andreia Fernandes, Adele Williamson, Pedro M Matias, Elin Moe
{"title":"Structure/function studies of the NAD<sup>+</sup>-dependent DNA ligase from the poly-extremophile Deinococcus radiodurans reveal importance of the BRCT domain for DNA binding.","authors":"Andreia Fernandes, Adele Williamson, Pedro M Matias, Elin Moe","doi":"10.1007/s00792-023-01309-z","DOIUrl":"10.1007/s00792-023-01309-z","url":null,"abstract":"<p><p>Bacterial NAD<sup>+</sup>-dependent DNA ligases (LigAs) are enzymes involved in replication, recombination, and DNA-repair processes by catalyzing the formation of phosphodiester bonds in the backbone of DNA. These multidomain proteins exhibit four modular domains, that are highly conserved across species, with the BRCT (breast cancer type 1 C-terminus) domain on the C-terminus of the enzyme. In this study, we expressed and purified both recombinant full-length and a C-terminally truncated LigA from Deinococcus radiodurans (DrLigA and DrLigA∆BRCT) and characterized them using biochemical and X-ray crystallography techniques. Using seeds of DrLigA spherulites, we obtained ≤ 100 µm plate crystals of DrLigA∆BRCT. The crystal structure of the truncated protein was obtained at 3.4 Å resolution, revealing DrLigA∆BRCT in a non-adenylated state. Using molecular beacon-based activity assays, we demonstrated that DNA ligation via nick sealing remains unaffected in the truncated DrLigA∆BRCT. However, DNA-binding assays revealed a reduction in the affinity of DrLigA∆BRCT for dsDNA. Thus, we conclude that the flexible BRCT domain, while not critical for DNA nick-joining, plays a role in the DNA binding process, which may be a conserved function of the BRCT domain in LigA-type DNA ligases.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"27 3","pages":"26"},"PeriodicalIF":2.9,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10309569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ExtremophilesPub Date : 2023-09-14DOI: 10.1007/s00792-023-01311-5
Jakub Grzesiak, Jan Gawor, Małgorzata Marta Rogala, Xenie Kouřilová, Stanislav Obruča
{"title":"Genetic engineering of low-temperature polyhydroxyalkanoate production by Acidovorax sp. A1169, a psychrophile isolated from a subglacial outflow.","authors":"Jakub Grzesiak, Jan Gawor, Małgorzata Marta Rogala, Xenie Kouřilová, Stanislav Obruča","doi":"10.1007/s00792-023-01311-5","DOIUrl":"10.1007/s00792-023-01311-5","url":null,"abstract":"<p><p>In recent years, extremophilic microorganisms have been employed as producers of the microbial bioplastics polyhydroxyalkanoates (PHA), which are of great biotechnological value. Nevertheless, cold-loving or psychrophilic (cryophilic) bacteria have been neglected in this regard. Here, we present an investigation of the Arctic glacier-derived PHA producer Acidovorax sp. A1169. Biolog GEN III Microplates were used as a screening tool to identify the most suitable carbon substrate concerning PHA synthesis. The strain produced homopolymer poly(3-hydroxybutyrate) (PHB) most efficiently (2 g/L) at a temperature of 15 °C when supplied with fructose or mannitol as carbon sources with a substantial decrease of PHB biosynthesis at 17.5 °C. The PHB yield did not increase considerably or even decreased when carbon source concentration exceeded 10 g/L hinting that the strain is oligotrophic in nature. The strain was also capable of introducing 3-hydroxyvalerate (3HV) into the polymer structure, which is known to improve PHA thermoplastic properties. This is the first investigation providing insight into a PHA biosynthesis process by means of a true psychrophile, offering guidelines on polar-region bacteria cultivation, production of PHA and also on the methodology for genetic engineering of psychrophiles.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"27 3","pages":"25"},"PeriodicalIF":2.9,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501959/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10288215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}