Jinfeng Chen, Mingtao Hu, Meiyuan Li, Chenqi Wang, Liu Wang, Yushun Tian, Hongwei Yan, Qi Liu, Xinyan Liang, Xiuli Wang
{"title":"Comparative transcriptome analysis identified genes involved in testicular development in Takifugu rubripes.","authors":"Jinfeng Chen, Mingtao Hu, Meiyuan Li, Chenqi Wang, Liu Wang, Yushun Tian, Hongwei Yan, Qi Liu, Xinyan Liang, Xiuli Wang","doi":"10.1007/s10695-024-01439-x","DOIUrl":"10.1007/s10695-024-01439-x","url":null,"abstract":"<p><p>To identify candidate genes and pathways involved in testicular development in Takifugu rubripes, a comparative transcription analysis was conducted across the various developmental stages of the testis (stages II to V). A total of 9520 differentially expressed genes (DEGs) were identified among the different stages, and they were significantly clustered into six clusters (P < 0.05). One thousand four hundred eleven DEGs such as gndf, wnt1, and cyp17b1 were found to be decreased from stage II to V. In contrast, 994 DEGs such as fn1, ift81, and cdc25a were found to be increased from stage II to V. Six thousand three hundred eighteen DEGs (e.g., dmrt1, sdk2, and chrna1) were identified as being expressed at similar levels at stages II and III. However, they were subsequently found to be decreased from stage III to IV. Four hundred one DEGs exhibited a significant upregulation trend from stage II to III. These genes were expressed at similar levels in stages III, IV, and V, including chrnd, wnt4a, and cyp7a1. The highest expression levels of 200 DEGs (e.g., ccnb2, cdk1, and sycp2) were observed in stage IV, while 196 DEGs (e.g., chmp1b, hsd17b3, and zp3) exhibited the highest expression level in stage III. Those DEGs were mainly enriched in the pathways (e.g., neuroactive ligand-receptor interaction, cell adhesion molecules, and calcium signaling pathways) associated with testicular development. Quantitative polymerase chain reaction of eight randomly selected genes validated the RNA sequencing results. This study may provide new insights into the molecular regulatory mechanisms governing testicular development and spermatogenesis in T. rubripes.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":"51 1","pages":"2"},"PeriodicalIF":2.5,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of growth, nutrient utilization, and metabolic function in rohu, Labeo rohita (Hamilton), fed diets incorporated with fermented Saraca asoca leaf meal.","authors":"Sandipan Talukdar, Koushik Ghosh","doi":"10.1007/s10695-024-01422-6","DOIUrl":"10.1007/s10695-024-01422-6","url":null,"abstract":"<p><p>The present study evaluated the potential of Ashoka, Saraca asoca leaf meal (SLM), in carp diets following fermentative processing with a tannase-producing fish gut bacterium, Bacillus subtilis (KP765736). The processing of SLM led to a significant (P < 0.05) reduction in major anti-nutrients (tannin, trypsin inhibitor, and crude fiber), while crude protein content increased. Seven sets of isonitrogenous (35% crude protein) and isocaloric (18.82 kJg<sup>-1</sup>) diets were prepared using raw (R1, R2, R3) and fermented SLM (F1, F2, F3) at 10%, 20%, and 30% levels by weight replacing fishmeal and de-oiled rice bran in the reference diet (RD). Diets were fed to rohu, Labeo rohita fingerlings (4.01 ± 0.08 g), for 70 days in triplicate. Fish fed diets containing 30% fermented SLM (F3) exhibited significantly (P < 0.05) better growth (241.25%), improved nutrient utilization, and enhanced activities of digestive enzymes compared to raw SLM-fed groups. Furthermore, tannin accumulation in the liver and muscle was significantly lower (P < 0.05) in fish fed fermented SLM diets compared to those fed raw SLM diets. Additionally, tannin contents in the diets were noticed to be positively correlated (P < 0.05) with tannin accumulation in fish tissues and negatively correlated (P < 0.05) with growth. Hepatic and muscle enzymes associated with carbohydrate metabolism in fish fed RD performed similarly to those reared on fermented SLM diets. Conversely, key enzymes involved in protein metabolism, hexose monophosphate shunt, and the tri-carboxylic-acid cycle showed increased activities in fish fed raw SLM diets, indicating dietary stress and a shift from carbohydrate metabolism to protein catabolism. Moreover, protein, glycogen, and amino acids in hepatopancreas and muscle showed a progressive increase with the gradual inclusion of fermented SLM in the diets. In conclusion, this study might suggest incorporating 30% (w/w) fermented SLM in the diets of rohu without interfering with growth, feed utilization, and metabolic function.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":"51 1","pages":"3"},"PeriodicalIF":2.5,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qing Li, Min Fu, Shengqin Zhu, Juan Liu, Yanqing Li, Zhiyong Xue, Zhigang Zhou, Lijuan Yu
{"title":"Effects of dietary hydroxy-cinnamic acid derivatives on growth, muscle, and intestinal parameters of Tilapia (Oreochromis niloticus).","authors":"Qing Li, Min Fu, Shengqin Zhu, Juan Liu, Yanqing Li, Zhiyong Xue, Zhigang Zhou, Lijuan Yu","doi":"10.1007/s10695-024-01438-y","DOIUrl":"10.1007/s10695-024-01438-y","url":null,"abstract":"<p><p>Hydroxycinnamic acid derivatives are a class of phenolic acid compounds, including sinapic acid, ferulic acid, and caffeic acid, which are widely found in plants. This experiment was conducted to study the effects of hydroxycinnamic acid derivatives (sinapic acid, ferulic acid, and caffeic acid) on the growth performance, muscle physical parameters, and intestinal morphology of tilapia. A total of 320 tilapia fingerlings (9.99 ± 0.12 g) were randomly divided into 4 groups with 4 replicates per group and 20 tilapia per replicate. Each group was fed a basal diet (control group), and the experimental diet supplemented with 0.52 mmol/kg sinapic acid, ferulic acid, and caffeic acid, respectively. After 8 weeks of feeding, the growth indexes and serum indexes of tilapia were measured, and the body, muscle composition, and muscle physical parameters, as well as the intestinal morphology were analyzed. The results showed that the addition of hydroxycinnamic acid derivatives to the diets significantly increased the weight gain rate (WGR) compared with the control (p < 0.05), with improvements of approximately 14.93%, 27.27%, and 28.06% for sinapic acid, ferulic acid, and caffeic acid, respectively. In the caffeic acid and ferulic acid groups, the final mean weight (FBW) was significantly increased and the feed coefficient (FCR) was significantly decreased compared with the control (p < 0.05). Compared with the control group, the hydroxycinnamic acid derivatives group had significantly lower levels of aspartate aminotransferase (AST), glucose (GLU), triglyceride (TG), and lactate dehydrogenase (LDH) (p < 0.05), but had significantly higher levels of albumin (ALB), total protein (TP), alkaline phosphatase (ALP), and blood urea nitrogen (BUN) (p < 0.05). There were no significant differences in alanine aminotransferase (ALT) and total cholesterol (TCHO) among all groups (p > 0.05). Besides, moisture, crude protein, crude fat, and ash in whole fish and muscle among all groups showed no significant differences (p > 0.05). In addition, hardness, gumminess, adhesiveness, and resilience of muscle in tilapia fed the hydroxycinnamic acid derivative were significantly higher than that of the control group (p < 0.05). Chewiness, springiness, stringiness, and cohesiveness showed no statistically significant differences among the treatments (p > 0.05). The analysis of intestinal morphology showed that the villus height and muscle thickness of the foregut and hindgut in the fish fed hydroxycinnamic acid derivatives were significantly higher than those in the control fish (p < 0.05), but the villus width of the foregut and hindgut did not differ significantly among the treatment groups (p > 0.05). In conclusion, dietary hydroxycinnamic acid derivatives can improve the growth, muscle physical parameters, and intestinal morphology of tilapia. Ferulic acid and caffeic acid had stronger beneficial effects on tilapia than sinapic acid.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":"51 1","pages":"4"},"PeriodicalIF":2.5,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exposure to nitrate and nitrite disrupts cardiovascular development through estrogen receptor in zebrafish embryos and larvae.","authors":"Febriyansyah Saputra, Shao-Yang Hu, Mitsuyo Kishida","doi":"10.1007/s10695-024-01381-y","DOIUrl":"10.1007/s10695-024-01381-y","url":null,"abstract":"<p><p>Increasing nitrate concentration on surface and groundwater due to anthropogenic activities is an environmental concern. In this study, Tg(fli1: EGFP) zebrafish embryos were exposed to nitrate (NO<sub>3</sub><sup>-</sup>) and nitrite (NO<sub>2</sub><sup>-</sup>), and their cardiovascular development were investigated. Exposure to 10 mg/L NO<sub>3</sub>-N and 1 and 10 mg/L NO<sub>2</sub>-N decreased heart rate at 48-96-h post-fertilization (hpf), ventricular volume, and red blood cell flow rate at 96 hpf. Similar concentrations increased the number of embryos and larvae with pericardial edema and missing intersegmental and parachordal vessels in the caudal region at 48-96 hpf. Addition of ICI 182,720 (ICI) reversed the effects of nitrate and nitrite, suggesting estrogen receptors (ER) are involved. 10 mg/L NO<sub>3</sub>-N and 1 mg/L NO<sub>2</sub>-N decreased cardiovascular-related genes, gata4,5,6, hand2, nkx2.5, nkx2.7, tbx2a, tbx2b, and fgf1a. Gene expressions of ovarian aromatase and brain aromatase (cyp19a1a and cyp19a1b, respectively) decreased in the exposed groups, whereas ERs (esr1, esr2a, and esr2b) and nitric oxide synthase 2a (nos2a) increased. The effects on gene expression were also reversed by addition of ICI. Taken together, nitrate and nitrite disrupt cardiovascular system through ER in developing zebrafish, implying that environmental nitrate and nitrite contamination may be harmful to aquatic organisms.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":" ","pages":"2165-2178"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Debaprasad Koner, Revelbornstar Snaitang, Kanhu Charan Das, Nirmalendu Saha
{"title":"Molecular characterization of heat shock protein 70 and 90 genes and their expression analysis in air-breathing magur catfish (Clarias magur) while exposed to zinc oxide nanoparticles.","authors":"Debaprasad Koner, Revelbornstar Snaitang, Kanhu Charan Das, Nirmalendu Saha","doi":"10.1007/s10695-024-01397-4","DOIUrl":"10.1007/s10695-024-01397-4","url":null,"abstract":"<p><p>The air-breathing magur catfish (Clarias magur) are frequently challenged with high environmental pollutants, including that of various metal nanoparticles (NPs) in their natural habitats. Heat shock proteins (HSPs) are essential molecular chaperones for preserving intracellular protein homeostasis in eukaryotic cells. In aquatic animals, HSPs are known to play important defensive roles associated with various environmental stress-related cellular damages. In the present investigation, we characterized the molecular and structural organization of distinct HSPs and their potential induction of HSP genes in multiple magur catfish tissues while exposed to ZnO NPs for 14 days. The sequence alignment of four HSP genes (hsp70, hsc70, hsp90a, and hsp90b) of magur catfish demonstrated evolutionary parallels with bony fishes and total conservation of active sites across the amphibia, fish, and mammals. From the architectural analysis of HSP70, HSC70, HSP90a, and HSP90b proteins, a structural similarity with mammals was observed, suggesting the functional resemblances of the studied HSPs in chaperone mechanisms. In the examined tissues, the mRNAs of HSP genes expressed constitutively. Exposure of C. magur to ZnO NPs (10 mg/L) in situ led to a considerable increase in the levels of mRNAs for several HSP genes and translated proteins, with HSP70 exhibiting the highest level of expression. Thus, it can be contemplated that HSPs may be involved in defending the magur catfish against the ZnO NP- and other metal NP-mediated cellular damages. The results provide new insights into the involvement of HSP machinery during adaptation to the ZnO NP-induced stress in magur catfish.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":" ","pages":"2389-2406"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin Geffroy, Alexander Goikoetxea, Nadège Villain-Naud, Anne-Sophie Martinez
{"title":"Early fasting does not impact gonadal size nor vasa gene expression in the European seabass Dicentrarchus labrax.","authors":"Benjamin Geffroy, Alexander Goikoetxea, Nadège Villain-Naud, Anne-Sophie Martinez","doi":"10.1007/s10695-024-01395-6","DOIUrl":"10.1007/s10695-024-01395-6","url":null,"abstract":"<p><p>Primordial germ cells (PGCs) play a crucial role in sexual development in fish, with recent studies revealing their influence on sexual fate. Notably, PGC number at specific developmental stages can determine whether an individual develops as male or female. Temperature was shown to impact PGC proliferation and the subsequent phenotypic sex in some fish species. Here, we aimed at testing the role of food deprivation on gonad development in the European seabass Dicentrarchus labrax, a species displaying a polygenic sex determination system with an environmental influence. We subjected larvae to two periods of starvation to investigate whether restricting growth affects both gonadal size and vasa gene expression. We first confirmed by immunohistochemistry that Vasa was indeed a marker of PGCs in the European seabass, as in other fish species. We also showed that vasa correlated positively with fish size, confirming that it could be used as a marker of feminization. However, starvation did not show any significant effects on vasa expression nor on gonadal size. It is hypothesized that evolutionary mechanisms likely safeguard PGCs against environmental stressors to ensure reproductive success. Further research is needed to elucidate the intricate interplay between environmental cues, PGC biology, and sexual differentiation in fish.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":" ","pages":"2423-2435"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Establishment and identification of the gill cell line from the blunt snout bream (Megalobrama amblycephala) and its application in studying gill remodeling under hypoxia.","authors":"Wenya Xu, Yahui Feng, Songlin Chen, Huihu Wang, Jian Wen, Guodong Zheng, Ganxiang Wang, Shuming Zou","doi":"10.1007/s10695-024-01393-8","DOIUrl":"10.1007/s10695-024-01393-8","url":null,"abstract":"<p><p>To probe the mechanisms of gill remodeling in blunt snout bream under hypoxic conditions, we selected gill tissue for primary cell culture to establish and characterize the first blunt snout bream gill cell line, named MAG. The gill cells were efficiently passaged in M199 medium supplemented with 8% antibiotics and 15% fetal bovine serum at 28 °C, exhibiting primarily an epithelial-fibroblast mixed type. Additionally, the MAG cells (17th generation) were subjected to four experimental conditions-normoxia, hypoxia 12 h, hypoxia 24 h, and reoxygenation 24 h (R24h)-to evaluate the effects of hypoxia and reoxygenation on MAG cells during gill remodeling. We found that the MAG cell morphology underwent shrinkage and mitochondrial potential gradually lost, even leading to gradual apoptosis with increasing hypoxia duration and increased reactive oxygen species (ROS) activity. Upon reoxygenation, MAG cells gradually regain cellular homeostasis, accompanied by a decrease in ROS activity. Analysis of superoxide dismutase (SOD), glutathione (GSH), lactate dehydrogenase (LDH), catalase (CAT), anti-superoxide anion, and other enzyme activities revealed enhanced antioxidant enzyme activity in MAG cells during hypoxia, aiding in adapting to hypoxic stress and preserving cell morphology. After reoxygenation, the cells gradually returned to normoxic levels. Our findings underscore the MAG cells can be used to study hypoxic cell apoptosis during gill remodeling. Therefore, the MAG cell line will serve as a vital in vitro model for exploring gill remodeling in blunt snout bream under hypoxia.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":" ","pages":"2475-2488"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of the molecular mechanism in fish using eugenol as anesthesia based on network pharmacology.","authors":"Xiangbing Zeng, Xiaoting Zheng, Jingru Wu, Hongbiao Dong, Jiasong Zhang","doi":"10.1007/s10695-024-01382-x","DOIUrl":"10.1007/s10695-024-01382-x","url":null,"abstract":"<p><p>Eugenol is a commonly used fish anesthetic, but its mechanism of action is not fully understood. This study employed network pharmacology, molecular docking, and molecular dynamics simulation to explore the anesthetic targets of eugenol in fish. Initially, 63 potential targets for eugenol anesthesia were identified using databases such as SwissTarget, TargetNet, GeneCards, OMIM, and TTD. The DAVID database was utilized to analyze the GO functions and KEGG pathways of these targets, revealing 384 GO enrichment terms and 43 KEGG pathways. These terms involved neuroactive ligand-receptor interaction, calcium signaling pathway, and synaptic transmission. Subsequently, AutodockTools software facilitated molecular docking with targets in the KEGG pathway for \"neuroactive ligand-receptor interaction.\" The results showed that eugenol had a strong affinity with these proteins. Concurrently, molecular dynamics simulations were conducted on the proteins with the top four lowest binding energies (Cnr1, Oprk1, Nr3c1, and Chrm5a) in the presence of eugenol. The eugenol-protein complexes remained stable and equilibrated within the dynamic environment. The results indicated that eugenol-anesthesia might affect membrane receptors, neurotransmitters, and ion signaling. This study elucidates the anesthetic mechanism of eugenol, enriches the primary data on fish anesthesia, and offers new analytical tools for understanding the action mechanisms of fishery drugs.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":" ","pages":"2191-2205"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jin A Kim, Young-Su Park, Jun-Hwan Kim, Cheol Young Choi
{"title":"Hyposalinity elicits physiological responses and alters intestinal microbiota in Korean rockfish Sebastes schlegelii.","authors":"Jin A Kim, Young-Su Park, Jun-Hwan Kim, Cheol Young Choi","doi":"10.1007/s10695-024-01387-6","DOIUrl":"10.1007/s10695-024-01387-6","url":null,"abstract":"<p><p>Global warming significantly impacts aquatic ecosystems, with changes in the salt environment negatively affecting the physiological responses of fish. We investigated the impact of hyposalinity on the physiological responses and intestinal microbiota of Sebastes schlegelii under the context of increased freshwater influx due to climate change. We focused on the osmoregulatory capacity, oxidative stress responses, and alterations in the intestinal microbiome of S. schlegelii under low-salinity conditions. Our findings revealed compromised osmoregulatory capacity in S. schlegelii under low-salinity conditions, accompanied by the activation of oxidative stress responses, indicating physiological adaptations to cope with environmental stress. Specifically, changes in Na<sup>+</sup>/K<sup>+</sup>-ATPase (NKA) activity in gill tissues were associated with decreased osmoregulatory capacity. Furthermore, the analysis of the intestinal microbiome led to significant changes in microbial diversity. Exposure to low-salinity environments led to dysbiosis, with notable decreases in the relative abundance of Gammaproteobacteria at the class level and specific genera such as Enterovibrio, and Photobacterium. Conversely, Bacilli classes, along with genera like Mycoplasma, exhibited increased proportions in fish exposed to low-salinity conditions. These findings underscore the potential impact of environmental salinity changes on the adaptive capacity of fish species, particularly in the context of aquaculture. Moreover, they highlight the importance of considering both physiological and microbial responses in understanding the resilience of aquatic organisms to environmental stress. Additionally, they highlight the importance of intestinal microbiota analyses in understanding the immune system and disease management in fish.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":" ","pages":"2315-2326"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}