{"title":"Spatial and temporal patterns and driving factors of forest fires based on an optimal parameter-based geographic detector in the Panxi region, Southwest China","authors":"Jia Liu, Yukuan Wang, Haiyan Guo, Yafeng Lu, Yuanxin Xu, Yu Sun, Weiwei Gan, Rui Sun, Zhengyang Li","doi":"10.1186/s42408-024-00257-z","DOIUrl":"https://doi.org/10.1186/s42408-024-00257-z","url":null,"abstract":"The Panxi region in China is among the areas that are most severely impacted by forest fires. Despite this, there is currently a lack of comprehensive and systematic research on the spatial and temporal distribution patterns, as well as the drivers, of forest fires in the region. To reveal bio-geo-climatic and anthropogenic influences, this study investigated the temporal and spatial characteristics of forest fires and migration patterns of the center of gravity of forest fires in Panxi. A parametric optimal geographical detection model was utilized to quantify the influence of various individual factors and their combinations on the spatial patterns of forest fire occurrence in the whole Panxi region and sub-region, by analyzing the forest fire dataset from 2004 to 2020. From 2004 to 2020, the Panxi region experienced an upward trend in the number of forest fires and the area burned. However, the trends were not consistent over the entire period. Between 2004 and 2014, both the number of fires and the area burned showed fluctuations and an overall increase. In contrast, between 2015 and 2020, there was a significant decrease in the number of fires, while the area burned showed a continued upward trend. The study identified abrupt changes in the frequency of forest fires and burned areas, primarily in 2007 and 2016. Spatially, forest fires in Panxi exhibited a positive correlation and local clustering. The river valley basin and hilly regions displayed a higher incidence of forest fires, which were concentrated mainly along the hill edges. In the whole area of Panxi, climatic factors have a predominant influence on forest fire occurrences. Specifically, evaporation, maximum temperature, average temperature, number of days without rain, and minimum temperature demonstrated the strongest explanatory power. Furthermore, this relationship was found to be reinforced when combined with topographical, human activities, and vegetation factors. The spatial variation of drought within each sub-district has a stronger explanatory power for the distribution characteristics of forest fires in the region than at the Panxi-wide scale. The factor with the maximum interaction in most regions was the dual factor of rainfall and drought. The study’s findings validate the applicability of geographic probes for identifying the drivers of fire occurrence and enhance our understanding of the drivers and their combined effects on the spatial context of the fire-incident study area.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"1 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140155370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fire EcologyPub Date : 2024-03-14DOI: 10.1186/s42408-024-00256-0
Roxane Andersen, Paula Fernandez-Garcia, Alice Martin-Walker, Daniela Klein, Chris Marshall, David J. Large, Robert Hughes, Mark H. Hancock
{"title":"Blanket bog vegetation response to wildfire and drainage suggests resilience to low severity, infrequent burning","authors":"Roxane Andersen, Paula Fernandez-Garcia, Alice Martin-Walker, Daniela Klein, Chris Marshall, David J. Large, Robert Hughes, Mark H. Hancock","doi":"10.1186/s42408-024-00256-0","DOIUrl":"https://doi.org/10.1186/s42408-024-00256-0","url":null,"abstract":"In 2019, a wildfire impacted an area of blanket bog and wet heath > 60 km2 in the Flow Country peatlands of northern Scotland, a site of global significance. Unusually the footprint of the wildfire included discrete areas of degraded, restored, and near-natural blanket bogs. Following the wildfire, we surveyed vegetation in 387 quadrats in burnt and unburnt areas. The study aimed to determine whether and how proximity to human-made drains and microtopography affected fire-vegetation interactions and included older wildfire sites and unburnt control sites for context. Overall, our study suggests that the 2019 Flow Country wildfire caused mostly superficial burning; except in the most degraded area, which burned more severely and where we recorded more profound impacts on the vegetation. We found higher cover of litter, which in turn led to increased localized fire damage in quadrats close to drains compared with quadrats away from the influence of drains. We also found greater fire impacts (e.g., proportions of moss burnt and Sphagnum discoloration) on hummocks, particularly where they were higher relative to the hollows. Overall, vegetation both near and away from drains largely resembled nearby unburnt sites within 20 years. Overall, our study suggests that the 2019 Flow Country wildfire caused mostly superficial burning, except in the most degraded areas. Vegetation communities of blanket bogs associated with conservation and restoration areas in the region appear to be largely resilient to occasional, low severity wildfires. This implies that management interventions that maintain wet conditions in peatlands have the potential to help reduce the risks of severe wildfires.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"32 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global impacts of fire regimes on wildland bird diversity","authors":"Fátima Arrogante-Funes, Inmaculada Aguado, Emilio Chuvieco","doi":"10.1186/s42408-024-00259-x","DOIUrl":"https://doi.org/10.1186/s42408-024-00259-x","url":null,"abstract":"Fire is a natural disturbance that significantly impacts ecosystems and plays a crucial role in the distribution and preservation of biota worldwide. The effects of fires on bird diversity can be both positive, as they can create new habitats, and negative, as they can reduce nesting success. To fully understand the ecological implications of wildfires, we need to understand the spatial distribution of wildland bird diversity and fire regimes and how fire regimes affect wildland bird diversity ecosystems. Using data collected at a global scale, we examined effects of time-averaged fire regimes on the spatial diversity of wildland bird species. Initially, we used the MaxEnt algorithm to model the potential distribution of 1,115 wildland bird species over a 20-year period. We also processed satellite observations of burned areas (FIRECCI51) during the same period to estimate fire regime characteristics, including the average proportion of burnt vegetation, interannual variability in the burnt area, and fire intensity. Finally, the association between wild bird diversity and fire variables in each biome was determined through Spearman, Bonferroni, and Kruskal-Wallis statistics. Our findings revealed that (I) the most affected wildland bird communities are those found in tropical ecosystems, where the majority of fires occur; (II) high fire intensity values and a substantial proportion of burned vegetation have a positive impact on maintaining a diverse population of wildland birds in biomes characterized by savannah or grassland covers, as seen in temperate or tropical zones. Conversely, low fire intensity values and a smaller proportion of burned vegetation also promote greater diversity of wildland birds in boreal or temperate zones, and (III) in Mediterranean ecosystems, a clear association between wildland bird diversity and wildfires could not be established. This research could help identify areas that are ecologically vulnerable to wildfires. It could also be useful in guiding regional studies aligned with developing sustainable landscape management practices and conserving priority ecological zones in tropical ecosystems.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"8 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fire EcologyPub Date : 2024-03-08DOI: 10.1186/s42408-024-00253-3
Michael C. Stambaugh, Joseph M. Marschall, Erin R. Abadir, Richard P. Guyette, Daniel C. Dey
{"title":"Historical fire regimes from red pines (Pinus resinosa Ait.) across the Tension Zone in the Lower Peninsula, Michigan USA","authors":"Michael C. Stambaugh, Joseph M. Marschall, Erin R. Abadir, Richard P. Guyette, Daniel C. Dey","doi":"10.1186/s42408-024-00253-3","DOIUrl":"https://doi.org/10.1186/s42408-024-00253-3","url":null,"abstract":"Currently, no multiple century fire scar records have been constructed in the Lower Peninsula of Michigan, USA, a region where historical vegetation ranged from prairies and oak-dominated woodlands in the south to conifer-northern hardwood forests and swamps to the north. The western portion of the Huron-Manistee National Forests is located within this strong vegetation transition (i.e., “Tension Zone”) and, based on this study, has well-preserved remnant red pine trees dating back to at least the late 1400s with fire scars dating back to 1523. From fire scar records constructed at four study sites, we documented historical fires as having a wide range of fire intervals and seasonalities. A general timeline of fire activity changes in this region can be described as relatively frequent fire in the pre- and early-European contact eras, variable and generally less fire from this point forward until the period of major logging activities after which fire frequency was significantly increased. Historical fires were associated with drought in the year of fire. Some broad synchronies of fire occurrence existed among sites such as 3 of 4 sites recording fires in years 1717, 1774, and 1829. Interestingly, these years were not exceptionally dry nor among the driest fire years. Future development of fire scar records will likely improve spatio-temporal characterization of regional fire regimes including understanding of human-climate-fire dynamics.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"298 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140070887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of forest fire severity and land surface temperature using Google Earth Engine: a case study of Gujarat State, India","authors":"Keval H. Jodhani, Haard Patel, Utsav Soni, Rishabh Patel, Bhairavi Valodara, Nitesh Gupta, Anant Patel, Padam jee Omar","doi":"10.1186/s42408-024-00254-2","DOIUrl":"https://doi.org/10.1186/s42408-024-00254-2","url":null,"abstract":"Forest fires are a recurring issue in many parts of the world, including India. These fires can have various causes, including human activities (such as agricultural burning, campfires, or discarded cigarettes) and natural factors (such as lightning). The present study presents a comprehensive and advanced methodology for assessing wildfire susceptibility by integrating diverse environmental variables and leveraging cutting-edge machine learning techniques across Gujarat State, India. The primary goal of the study is to utilize Google Earth Engine to compare locations in Gujarat, India, before and after forest fires. High-resolution satellite data were used to assess the amount and types of changes caused by forest fires. The present study meticulously analyzes various environmental variables, i.e., slope orientation, elevation, normalized difference vegetation index (NDVI), drainage density, precipitation, and temperature to understand landscape characteristics and assess wildfire susceptibility. In addition, a sophisticated random forest regression model is used to predict land surface temperature based on a set of environmental parameters. The maps that result depict the geographical distribution of normalized burn ratio and difference normalized burn ratio and land surface temperature forecasts, providing valuable insights into spatial patterns and trends. The findings of this work show that an automated temporal analysis utilizing Google Earth Engine may be used successfully over a wide range of land cover types, providing critical data for future monitoring of such threats. The impact of forest fires can be severe, leading to the loss of biodiversity, damage to ecosystems, and threats to human settlements.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"22 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140055747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fire EcologyPub Date : 2024-02-28DOI: 10.1186/s42408-024-00252-4
Martin C. Holdrege, Daniel R. Schlaepfer, Kyle A. Palmquist, Michele Crist, Kevin E. Doherty, William K. Lauenroth, Thomas E. Remington, Karin Riley, Karen C. Short, John C. Tull, Lief A. Wiechman, John B. Bradford
{"title":"Wildfire probability estimated from recent climate and fine fuels across the big sagebrush region","authors":"Martin C. Holdrege, Daniel R. Schlaepfer, Kyle A. Palmquist, Michele Crist, Kevin E. Doherty, William K. Lauenroth, Thomas E. Remington, Karin Riley, Karen C. Short, John C. Tull, Lief A. Wiechman, John B. Bradford","doi":"10.1186/s42408-024-00252-4","DOIUrl":"https://doi.org/10.1186/s42408-024-00252-4","url":null,"abstract":"Wildfire is a major proximate cause of historical and ongoing losses of intact big sagebrush (Artemisia tridentata Nutt.) plant communities and declines in sagebrush obligate wildlife species. In recent decades, fire return intervals have shortened and area burned has increased in some areas, and habitat degradation is occurring where post-fire re-establishment of sagebrush is hindered by invasive annual grasses. In coming decades, the changing climate may accelerate these wildfire and invasive feedbacks, although projecting future wildfire dynamics requires a better understanding of long-term wildfire drivers across the big sagebrush region. Here, we integrated wildfire observations with climate and vegetation data to derive a statistical model for the entire big sagebrush region that represents how annual wildfire probability is influenced by climate and fine fuel characteristics. Wildfire frequency varied significantly across the sagebrush region, and our statistical model represented much of that variation. Biomass of annual and perennial grasses and forbs, which we used as proxies for fine fuels, influenced wildfire probability. Wildfire probability was highest in areas with high annual forb and grass biomass, which is consistent with the well-documented phenomenon of increased wildfire following annual grass invasion. The effects of annuals on wildfire probability were strongest in places with dry summers. Wildfire probability varied with the biomass of perennial grasses and forbs and was highest at intermediate biomass levels. Climate, which varies substantially across the sagebrush region, was also predictive of wildfire probability, and predictions were highest in areas with a low proportion of precipitation received in summer, intermediate precipitation, and high temperature. We developed a carefully validated model that contains relatively simple and biologically plausible relationships, with the goal of adequate performance under novel conditions so that useful projections of average annual wildfire probability can be made given general changes in conditions. Previous studies on the impacts of vegetation and climate on wildfire probability in sagebrush ecosystems have generally used more complex machine learning approaches and have usually been applicable to only portions of the sagebrush region. Therefore, our model complements existing work and forms an additional tool for understanding future wildfire and ecological dynamics across the sagebrush region. ","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"7 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140005070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fire EcologyPub Date : 2024-02-15DOI: 10.1186/s42408-024-00250-6
Octavio Toy-Opazo, Andrés Fuentes-Ramirez, Valeria Palma-Soto, Rafael A. Garcia, Kirk A. Moloney, Rodrigo Demarco, Andrés Fuentes-Castillo
{"title":"Flammability features of native and non-native woody species from the southernmost ecosystems: a review","authors":"Octavio Toy-Opazo, Andrés Fuentes-Ramirez, Valeria Palma-Soto, Rafael A. Garcia, Kirk A. Moloney, Rodrigo Demarco, Andrés Fuentes-Castillo","doi":"10.1186/s42408-024-00250-6","DOIUrl":"https://doi.org/10.1186/s42408-024-00250-6","url":null,"abstract":"Vegetation plays a crucial role in the ignition, propagation, and severity of fire, and understanding the relationship between plants and fire through flammability attributes has become a useful tool that is increasingly used in studies on fire dynamics worldwide. However, in the southern cone of South America, rather few studies have systematically and specifically addressed the flammability of vegetation, and yet fewer have compared native and non-native species. Given the increasing interest in knowing the flammability characteristics of vegetation, this review aims to assess the potential differences in flammability between native and non-native plant species that inhabit the southern cone and to identify the main methodologies and experiments used to analyze vegetation flammability. Twenty-eight species were identified, 18 native to the region and 10 non-native. Additionally, 64 experimental tests were revised to evaluate plant flammability. It was found that Cryptocarya alba, Acacia dealbata, Eucalyptus globulus, and Pinus ponderosa are the species with a high flammability index. By contrast, the species Araucaria araucana, Austrocedrus chilensis, Embothrium coccineum, and Persea lingue showed low flammability. The methodologies used to evaluate vegetation flammability were highly variable, with the use of epiradiators being the most frequent. Our review indicates that the geographic origin of vegetation (native vs. non-native in South America) is not a decisive factor in determining species-level differences in flammability. Other relevant factors that contribute with the degree of plant flammability include fuel moisture, the morphology of the species, and its internal chemical compounds. We highlight the necessity of continuing the study of plant flammability and advance in the standardization of protocols and measurements, using uniform criteria and increasing comparative studies between species, particularly in the southern cone of South America where catastrophic wildfires are increasing.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"29 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fire EcologyPub Date : 2024-02-13DOI: 10.1186/s42408-024-00251-5
Byron B. Lamont, Geoffrey E. Burrows, Juli G. Pausas
{"title":"Fire-type heat increases the germination of Cistaceae seeds in contrast to summer heat","authors":"Byron B. Lamont, Geoffrey E. Burrows, Juli G. Pausas","doi":"10.1186/s42408-024-00251-5","DOIUrl":"https://doi.org/10.1186/s42408-024-00251-5","url":null,"abstract":"Our analyses of data in Luna et al. (Fire Ecology 19:52, 2023) do not support the proposal that dormancy release of the hard seeds in 12 species of Cistaceae is a “two-step process” involving high summer temperatures followed by fire-type heat. The reverse is true: subjection to a month of daily alternating temperatures of 50/20 °C (summer heat) is more likely to induce dormancy among initially soft seeds or secondary dormancy among those softened by fire heat or reduce the ability of fire heat to soften the seeds. The need to inspect seeds for the presence of an open “water gap” following various heat treatments, and using more realistic summer temperatures in future studies, is clear.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"32 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fire EcologyPub Date : 2024-02-08DOI: 10.1186/s42408-023-00237-9
Sayedeh Sara Sayedi, Benjamin W. Abbott, Boris Vannière, Bérangère Leys, Daniele Colombaroli, Graciela Gil Romera, Michał Słowiński, Julie C. Aleman, Olivier Blarquez, Angelica Feurdean, Kendrick Brown, Tuomas Aakala, Teija Alenius, Kathryn Allen, Maja Andric, Yves Bergeron, Siria Biagioni, Richard Bradshaw, Laurent Bremond, Elodie Brisset, Joseph Brooks, Sandra O. Brugger, Thomas Brussel, Haidee Cadd, Eleonora Cagliero, Christopher Carcaillet, Vachel Carter, Filipe X. Catry, Antoine Champreux, Emeline Chaste, Raphaël Daniel Chavardès, Melissa Chipman, Marco Conedera, Simon Connor, Mark Constantine, Colin Courtney Mustaphi, Abraham N. Dabengwa, William Daniels, Erik De Boer, Elisabeth Dietze, Joan Estrany, Paulo Fernandes, Walter Finsinger, Suzette G. A. Flantua, Paul Fox-Hughes, Dorian M. Gaboriau, Eugenia M.Gayo, Martin. P. Girardin, Jeffrey Glenn, Ramesh Glückler, Catalina González-Arango, Mariangelica Groves, Douglas S. Hamilton, Rebecca Jenner Hamilton, Stijn Hantson, K...
{"title":"Assessing changes in global fire regimes","authors":"Sayedeh Sara Sayedi, Benjamin W. Abbott, Boris Vannière, Bérangère Leys, Daniele Colombaroli, Graciela Gil Romera, Michał Słowiński, Julie C. Aleman, Olivier Blarquez, Angelica Feurdean, Kendrick Brown, Tuomas Aakala, Teija Alenius, Kathryn Allen, Maja Andric, Yves Bergeron, Siria Biagioni, Richard Bradshaw, Laurent Bremond, Elodie Brisset, Joseph Brooks, Sandra O. Brugger, Thomas Brussel, Haidee Cadd, Eleonora Cagliero, Christopher Carcaillet, Vachel Carter, Filipe X. Catry, Antoine Champreux, Emeline Chaste, Raphaël Daniel Chavardès, Melissa Chipman, Marco Conedera, Simon Connor, Mark Constantine, Colin Courtney Mustaphi, Abraham N. Dabengwa, William Daniels, Erik De Boer, Elisabeth Dietze, Joan Estrany, Paulo Fernandes, Walter Finsinger, Suzette G. A. Flantua, Paul Fox-Hughes, Dorian M. Gaboriau, Eugenia M.Gayo, Martin. P. Girardin, Jeffrey Glenn, Ramesh Glückler, Catalina González-Arango, Mariangelica Groves, Douglas S. Hamilton, Rebecca Jenner Hamilton, Stijn Hantson, K...","doi":"10.1186/s42408-023-00237-9","DOIUrl":"https://doi.org/10.1186/s42408-023-00237-9","url":null,"abstract":"The global human footprint has fundamentally altered wildfire regimes, creating serious consequences for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions among land use, management, and climate change will affect fire behavior, representing a key knowledge gap for sustainable management. We used expert assessment to combine opinions about past and future fire regimes from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and implications of fire regime change from the beginning of the Holocene through the year 2300. Respondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though natural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most study regions. Responses suggested a ten-fold increase in the frequency of fire regime change during the last 250 years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed different climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming scenarios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerging fire regimes, while recognizing that management options are constrained under higher emission scenarios. The influence of humans on wildfire regimes has increased over the last two centuries. The perspective gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment complements empirical data and modeling, providing a broader perspective of fire science to inform decision making and future research priorities.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"16 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fire EcologyPub Date : 2024-02-08DOI: 10.1186/s42408-023-00226-y
Pablo Souza-Alonso, Beatriz Omil, Alexandre Sotelino, David García-Romero, Eugenio Otero-Urtaza, Mar Lorenzo Moledo, Otilia Reyes, Juan Carlos Rodríguez, Javier Madrigal, Daniel Moya, Juan Ramón Molina, Francisco Rodriguez y Silva, Agustín Merino
{"title":"Service-learning to improve training, knowledge transfer, and awareness in forest fire management","authors":"Pablo Souza-Alonso, Beatriz Omil, Alexandre Sotelino, David García-Romero, Eugenio Otero-Urtaza, Mar Lorenzo Moledo, Otilia Reyes, Juan Carlos Rodríguez, Javier Madrigal, Daniel Moya, Juan Ramón Molina, Francisco Rodriguez y Silva, Agustín Merino","doi":"10.1186/s42408-023-00226-y","DOIUrl":"https://doi.org/10.1186/s42408-023-00226-y","url":null,"abstract":"Forest fires represent a severe threat to Mediterranean ecosystems and are considered one of the major environmental and socioeconomic problems of the region. The project Plantando cara al fuego (PCF, Spain) is designed to transfer knowledge and to improve the training of new generations in forest fire management. The project is based on the application of service-learning (S-L), an educational methodology that combines learning and community service. Conceived as a compendium of S-L initiatives, the PCF project is composed of several S-L projects with the objective of reducing the problem of forest fires. The individual projects are developed at the regional/local level, each one involving different social agents such as researchers, students (from different disciplines), schools, multidisciplinary professionals, NGOs, or the administration. Participants received an initial training in S-L to design projects focused on different aspects of forest fires (environmental awareness, outreach/communication, fire prevention or post-fire restoration). These applied projects are formally integrated in the learning process via curriculum, which serve to teach and reinforce transversal skills and allow students to get involved and work to solve real problems. In general, the response of the participants was highly favorable, since the projects served to create an atmosphere that facilitates learning, interaction between participants, the application of theoretical class contents, knowledge transfer, or the exchange of good teaching practices. The summary of the PCF project presented in this work serves as a practical guide describing the activities, participants, and the necessary steps involved in the design, development, and evaluation of S-L projects to address environmental problems. In this case, the S-L was adapted to a specific context (i.e., the problem of forest fires) to which it had never been previously applied, but this methodology is versatile and can be applied to different environmental issues.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"24 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}