Charles R Smith, Jessica F Baird, Joelle Buitendorp, Hannah Horton, Macie Watkins, Jill C Stewart
{"title":"Implicit motor sequence learning using three-dimensional reaching movements with the non-dominant left arm.","authors":"Charles R Smith, Jessica F Baird, Joelle Buitendorp, Hannah Horton, Macie Watkins, Jill C Stewart","doi":"10.1007/s00221-024-06934-4","DOIUrl":"10.1007/s00221-024-06934-4","url":null,"abstract":"<p><p>Interlimb differences in reach control could impact the learning of a motor sequence that requires whole-arm movements. The purpose of this study was to investigate the learning of an implicit, 3-dimensional whole-arm sequence task with the non-dominant left arm compared to the dominant right arm. Thirty-one right-hand dominant adults completed two consecutive days of practice of a motor sequence task presented in a virtual environment with either their dominant right or non-dominant left arm. Targets were presented one-at-a-time alternating between Random and Repeated sequences. Task performance was indicated by the time to complete the sequence (response time), and kinematic measures (hand path distance, peak velocity) were used to examine how movements changed over time. While the Left Arm group was slower than the Right Arm group at baseline, both groups significantly improved response time with practice with the Left Arm group demonstrating greater gains. The Left Arm group improved performance by decreasing hand path distance (straighter path to targets) while the Right Arm group improved performance through a smaller decrease in hand path distance combined with increasing peak velocity. Gains made during practice on Day 1 were retained on Day 2 for both groups. Overall, individuals reaching with the non-dominant left arm learned the whole-arm motor sequence task but did so through a different strategy than individuals reaching with the dominant right arm. The strategy adopted for the learning of movement sequences that require whole-arm movements may be impacted by differences in reach control between the nondominant and dominant arms.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2715-2726"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fernanda M Q Silva, Kevin Pacheco-Barrios, Felipe Fregni
{"title":"Disruptive compensatory mechanisms in fibromyalgia syndrome and their association with pharmacological agents.","authors":"Fernanda M Q Silva, Kevin Pacheco-Barrios, Felipe Fregni","doi":"10.1007/s00221-024-06924-6","DOIUrl":"10.1007/s00221-024-06924-6","url":null,"abstract":"<p><p>Fibromyalgia syndrome (FMS) is a chronic disorder characterized commonly by widespread musculoskeletal pain and fatigue, predominantly affecting women, with its complexity often leading to underdiagnosis and complicating treatment effectiveness. Transcranial magnetic stimulation (TMS) metrics are potential markers to optimize FMS treatments; however, evidence is limited. Our study aimed to explore the relationship between cortical excitability and inhibition, assessed through TMS markers, and clinical characteristics in patients with FMS. This presented cross-sectional study employed baseline data from a clinical trial with 108 FMS patients, mostly female (88.8%), and mean age of 47.3 years old (SD = 12.06). Our analysis showed that decreased short-intracortical inhibition (SICI) was associated with gabapentinoids use, nicotine history, and increased fatigue levels, suggesting its connection with compensatory mechanisms for non-painful FMS features. Increased motor intracortical facilitation (ICF) was linked with greater pain severity and shorter FMS duration, implying its relationship with a reorganization of sensorimotor pathways due to chronic pain. Additionally, higher resting motor threshold (rMT) was associated with less effective pain modulation (lower conditioned pain modulation [CPM]), indicating a disruption of pain compensatory mechanism. Given the role of SICI in indexing homeostatic brain mechanisms and its association with fatigue, a hallmark characteristic of FMS-induced behavioral changes, these results suggest that FMS likely has a deleterious effect on brain inhibitory function, thus providing a potential novel insight for FMS mechanisms. In addition, it seems that this compensatory mechanism's disruption is enhanced by pharmacological agents such as gabapentioids and nicotine.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2701-2714"},"PeriodicalIF":16.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyosok Lim, Shijun Yan, Weena Dee, Renee Keefer, Iram Hameeduddin, Elliot J Roth, William Z Rymer, Ming Wu
{"title":"Cortical drive may facilitate enhanced use of the paretic leg induced by random constraint force to the non-paretic leg during walking in chronic stroke.","authors":"Hyosok Lim, Shijun Yan, Weena Dee, Renee Keefer, Iram Hameeduddin, Elliot J Roth, William Z Rymer, Ming Wu","doi":"10.1007/s00221-024-06932-6","DOIUrl":"10.1007/s00221-024-06932-6","url":null,"abstract":"<p><p>The goal of this study was to determine the effects of applying random vs. constant constraint force to the non-paretic leg during walking on enhanced use of the paretic leg in individuals post-stroke, and examine the underlying brain mechanisms. Twelve individuals with chronic stroke were tested under two conditions while walking on a treadmill: random vs. constant magnitude of constraint force applied to the non-paretic leg during swing phase of gait using a custom designed robotic system. Leg kinematics, muscle activity of the paretic leg, and electroencephalography (EEG) were recorded during treadmill walking. Paretic step length and muscle activity of the paretic ankle plantarflexors significantly increased after walking with random and constant constraint forces. Cortico-cortical connectivity between motor cortices and cortico-muscular connectivity from the lesioned motor cortex to the paretic ankle plantarflexors significantly increased for the random force condition but not for the constant force condition. In addition, individuals post-stroke with greater baseline gait variability showed greater improvements in the paretic step length after walking with random force condition but not with the constant force condition. In conclusion, application of random constraint force to the non-paretic leg may enhance the use of the paretic leg during walking by facilitating cortical drive from the lesioned motor cortex to the paretic ankle plantarflexors. Results from this study may be used for the development of constraint induced locomotor intervention approaches aimed at improving locomotor function in individuals after stroke.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2799-2814"},"PeriodicalIF":16.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patrick G Monaghan, William M Murrah, Kristina A Neely, Harrison C Walker, Jaimie A Roper
{"title":"Exploring age-related differences in the relationship between spatial and temporal contributions to step length asymmetry during split-belt adaptation.","authors":"Patrick G Monaghan, William M Murrah, Kristina A Neely, Harrison C Walker, Jaimie A Roper","doi":"10.1007/s00221-024-06929-1","DOIUrl":"10.1007/s00221-024-06929-1","url":null,"abstract":"<p><p>Gait adaptability is crucial for meeting environmental demands, and impaired gait adaptation increases fall risk, particularly in older adults. While prior research exists on older adults' gait adaptation, particularly in perturbation studies, the specific contributions of temporal and spatial adaptation strategies to step length asymmetry (SLA) during split-belt treadmill walking require further examination. This study fills this gap by evaluating how distinct adaptation strategies contribute to SLA in healthy young and older adults. 19 healthy young adults (20.4 ± 1.1 years) and 19 healthy older adults (68.3 ± 8.1 years) walked on a split-belt treadmill requiring their non-dominant leg to move twice as fast as their dominant leg. Repeated measures ANOVA investigated (1) spatial and temporal contributions to SLA, (2) SLA across gait adaptation epochs, and (3) rates of adaptation and deadaptation. Older adults displayed reduced temporal contributions to SLA compared to younger adults (F<sub>1,36</sub> = 6.42, p = .02, ŋ<sup>2</sup> = .15), but no group differences were observed in spatial contributions to SLA (F<sub>1,36</sub> = 3.23, p = .08, ŋ<sup>2</sup> = .082). SLA during adaptation and deadaptation did not differ by age group, nor did the rate of adaptation (F<sub>1,34.7</sub> = 0.594, p = .45) or deadaptation F<sub>1,33.6</sub> = 2.886, p = .09). These findings suggest that while older adults rely less on temporal strategies for gait adaptation, but maintain overall adaptability comparable to younger adults. Findings enhance our understanding of age-related changes in gait adaptation mechanisms and may inform targeted interventions to improve gait adaptability in older populations.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2815-2825"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568997/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cory A Potts, Rand A Williamson, Joshua D Jacob, Shailesh S Kantak, Laurel J Buxbaum
{"title":"Reaching the cognitive-motor interface: effects of cognitive load on arm choice and motor performance after stroke.","authors":"Cory A Potts, Rand A Williamson, Joshua D Jacob, Shailesh S Kantak, Laurel J Buxbaum","doi":"10.1007/s00221-024-06939-z","DOIUrl":"10.1007/s00221-024-06939-z","url":null,"abstract":"<p><p>A vexing characteristic of motor disability after stroke is that many individuals fail to use their affected arm effectively despite having the capacity to do so, a phenomenon termed arm nonuse. Based on the hypothesis that nonuse is influenced by the competing cognitive demands of many daily activities, we examined the effects of cognitive load on arm choice and motor performance in individuals with stroke using a novel virtual reality paradigm that mimics the demands of real-life visual search, object selection, and reaching to targets. Twenty individuals with single left or right hemispheric chronic stroke (11 left cerebrovascular accident; 9 right cerebrovascular accident) and 10 age-matched neurotypical participants completed the Virtual Reality Arm Choice task, in which they reached for target objects in an array under varied cognitive demand. To manipulate cognitive demand, we varied the semantic similarity of objects in the reaching space and the presence or absence of a secondary task. The results showed reduced use of the paretic arm under increased demand. Under cognitive load, participants with stroke also showed slower reach initiation, slower movements, increased reach curvature, and increased performance differences between the paretic and non-paretic arms. The arm choice of neurotypical individuals was also modulated under cognitive load. These data indicate that cognitive factors influence arm choice and motor performance in naturalistic reaching tasks in individuals with chronic stroke. Performance decrements under cognitive load may in turn influence reduced paretic arm use during daily activities.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2785-2797"},"PeriodicalIF":16.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142461552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Speech-evoked cortical activities and speech recognition in adult cochlear implant listeners: a review of functional near-infrared spectroscopy studies.","authors":"Reed Farrar, Samin Ashjaei, Meisam K Arjmandi","doi":"10.1007/s00221-024-06921-9","DOIUrl":"10.1007/s00221-024-06921-9","url":null,"abstract":"<p><p>Cochlear implants (CIs) are the most successful neural prostheses, enabling individuals with severe to profound hearing loss to access sounds and understand speech. While CI has demonstrated success, speech perception outcomes vary largely among CI listeners, with significantly reduced performance in noise. This review paper summarizes prior findings on speech-evoked cortical activities in adult CI listeners using functional near-infrared spectroscopy (fNIRS) to understand (a) speech-evoked cortical processing in CI listeners compared to normal-hearing (NH) individuals, (b) the relationship between these activities and behavioral speech recognition scores, (c) the extent to which current fNIRS-measured speech-evoked cortical activities in CI listeners account for their differences in speech perception, and (d) challenges in using fNIRS for CI research. Compared to NH listeners, CI listeners had diminished speech-evoked activation in the middle temporal gyrus (MTG) and in the superior temporal gyrus (STG), except one study reporting an opposite pattern for STG. NH listeners exhibited higher inferior frontal gyrus (IFG) activity when listening to CI-simulated speech compared to natural speech. Among CI listeners, higher speech recognition scores correlated with lower speech-evoked activation in the STG, higher activation in the left IFG and left fusiform gyrus, with mixed findings in the MTG. fNIRS shows promise for enhancing our understanding of cortical processing of speech in CI listeners, though findings are mixed. Challenges include test-retest reliability, managing noise, replicating natural conditions, optimizing montage design, and standardizing methods to establish a strong predictive relationship between fNIRS-based cortical activities and speech perception in CI listeners.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2509-2530"},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comments on \"The relationship between T7‑Fz alpha coherence and peak performance in self‑paced sports: a meta‑analytical review\" (Raman, Filho, Exp Brain., 2024): a verbal (analytical) disagreement.","authors":"Johnny V V Parr, Germano Gallicchio, Greg Wood","doi":"10.1007/s00221-024-06916-6","DOIUrl":"10.1007/s00221-024-06916-6","url":null,"abstract":"","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2487-2488"},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marion Naffrechoux, Eric Koun, Frederic Volland, Alessandro Farnè, Alice Catherine Roy, Denis Pélisson
{"title":"Eyes and hand are both reliable at localizing somatosensory targets.","authors":"Marion Naffrechoux, Eric Koun, Frederic Volland, Alessandro Farnè, Alice Catherine Roy, Denis Pélisson","doi":"10.1007/s00221-024-06922-8","DOIUrl":"10.1007/s00221-024-06922-8","url":null,"abstract":"<p><p>Body representations (BR) for action are critical to perform accurate movements. Yet, behavioral measures suggest that BR are distorted even in healthy people. However, the upper limb has mostly been used as a probe so far, making difficult to decide whether BR are truly distorted or whether this depends on the effector used as a readout. Here, we aimed to assess in healthy humans the accuracy of the eye and hand effectors in localizing somatosensory targets, to determine whether they may probe BR similarly. Twenty-six participants completed two localization tasks in which they had to localize an unseen target (proprioceptive or tactile) with either their eyes or hand. Linear mixed model revealed in both tasks a larger horizontal (but not vertical) localization error for the ocular than for the manual localization performance. However, despite better hand mean accuracy, manual and ocular localization performance positively correlated to each other in both tasks. Moreover, target position also affected localization performance for both eye and hand responses: accuracy was higher for the more flexed position of the elbow in the proprioceptive task and for the thumb than for the index finger in the tactile task, thus confirming previous results of better performance for the thumb. These findings indicate that the hand seems to beat the eyes along the horizontal axis when localizing somatosensory targets, but the localization patterns revealed by the two effectors seemed to be related and characterized by the same target effect, opening the way to assess BR with the eyes when upper limb motor control is disturbed.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2653-2664"},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transcutaneous spinal cord stimulation phase-dependently modulates spinal reciprocal inhibition induced by pedaling in healthy individuals.","authors":"Keita Takano, Tomofumi Yamaguchi, Kano Kikuma, Kohei Okuyama, Natsuki Katagiri, Takatsugu Sato, Shigeo Tanabe, Kunitsugu Kondo, Toshiyuki Fujiwara","doi":"10.1007/s00221-024-06926-4","DOIUrl":"10.1007/s00221-024-06926-4","url":null,"abstract":"<p><p>Reciprocal inhibition (RI) between leg muscles is crucial for smooth movement. Pedaling is a rhythmic movement that can increase RI in healthy individuals. Transcutaneous spinal cord stimulation (tSCS) stimulates spinal neural circuits by targeting the afferent fibers. Pedaling with simultaneous tSCS may modulate the plasticity of the spinal neural circuit and alter neural activity based on movement and muscle engagement. This study investigated the RI changes after pedaling and tSCS and determined the phase of pedaling in which tSCS should be applied for optimal RI modulation in healthy individuals. Eleven subjects underwent three interventions: pedaling combined with tSCS during the early phase of lower extension (phase 1), pedaling combined with tSCS during the late phase of lower flexion (phase 4) of the pedaling cycle, and pedaling combined with sham tSCS. The RI from the tibialis anterior to the soleus muscle was assessed before, immediately after, 15 min, and 30 min after the intervention. RI increased immediately after phase 4 and pedaling combined with sham tSCS, whereas no changes were observed after phase 1. These results demonstrate that tSCS modulates RI changes induced by pedaling in a stimulus phase-dependent manner in healthy individuals. However, the mechanism involved in this intervention needs to be explored to achieve higher efficacy.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2645-2652"},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Short-term cortical activation changes associated with postural compensation in swallowing.","authors":"Kelsey L Murray, Seng Mun Wong, Erin Kamarunas","doi":"10.1007/s00221-024-06928-2","DOIUrl":"10.1007/s00221-024-06928-2","url":null,"abstract":"<p><p>Compensatory strategies used to treat dysphagia, like the chin-down and chin-up positions, are often employed by speech-language pathologists to enhance swallowing safety. However, their effects on cortical neural responses remain unclear. This study aimed to investigate the cortical hemodynamic responses to swallowing across three head positions -chin-down, chin-neutral, and chin-up - using functional near-infrared spectroscopy (fNIRS) in the bilateral precentral and postcentral gyrus regions of interest. Twenty-six healthy adults completed 32 swallows of 5 ml water in each head position. Results revealed short-term cortical activation increases for chin-up swallows compared to both chin-neutral (mean difference = 1.2, SE = 0.18, p = .048) and chin-down swallows (mean difference = 0.76, SE = 0.18, p = .009). These findings suggest that postural changes during swallowing induce immediate neural adaptations in people without swallowing difficulty. These modifications likely reflect the necessary sensory and neuromuscular adaptations required for safe swallowing in different head positions, with less hyolaryngeal movement needed for a chin-down swallow and more movement needed for a chin-up swallow. While challenging swallow conditions, like the chin-up, may offer promising therapeutic potential, caution is warranted considering the associated safety risk, and further investigation is needed. This study provides insights into the immediate effects of head positions on cortical activity during swallowing and highlights avenues for future research in dysphagia rehabilitation.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2623-2631"},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527899/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}