Decoding binocular color differences via EEG signals: linking ERP dynamics to chromatic disparity in CIELAB space.

IF 1.6 4区 医学 Q4 NEUROSCIENCES
Famiao Mou, Zhineng Lv, Xuesong Jin, Jijun Pan, Lijun Yun, Zaiqing Chen
{"title":"Decoding binocular color differences via EEG signals: linking ERP dynamics to chromatic disparity in CIELAB space.","authors":"Famiao Mou, Zhineng Lv, Xuesong Jin, Jijun Pan, Lijun Yun, Zaiqing Chen","doi":"10.1007/s00221-025-07153-1","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences. Four classification models-Support Vector Machines (SVM), EEGNet, Temporal Convolutional Neural Network (T-CNN), and a hybrid CNN-LSTM model were employed to decode EEG data. The highest accuracy reached was 81.93% for binary classification tasks (the largest color differences) and 54.47% for a more nuanced four-class categorization, significantly exceeding random chance. This research offers the first evidence that binocular color differences can be objectively decoded through EEG signals, providing insights into the neural mechanisms of visual perception and forming a basis for developing color-based brain-computer interfaces (BCIs).</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":"243 10","pages":"209"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-025-07153-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences. Four classification models-Support Vector Machines (SVM), EEGNet, Temporal Convolutional Neural Network (T-CNN), and a hybrid CNN-LSTM model were employed to decode EEG data. The highest accuracy reached was 81.93% for binary classification tasks (the largest color differences) and 54.47% for a more nuanced four-class categorization, significantly exceeding random chance. This research offers the first evidence that binocular color differences can be objectively decoded through EEG signals, providing insights into the neural mechanisms of visual perception and forming a basis for developing color-based brain-computer interfaces (BCIs).

通过脑电图信号解码双眼色差:将ERP动态与CIELAB空间色差联系起来。
这项研究探索了如何通过脑电图信号(一种记录大脑电活动的方法)来识别每只眼睛分别呈现的颜色差异(双目色差)。在恒定亮度和色度的CIELAB色彩空间中定义了四种不同层次的绿红色差,本研究对其进行了研究。事件相关电位(ERPs)分析显示,随着双眼颜色差异的增加,P300分量的振幅显著下降,表明大脑对这些差异有可测量的反应。采用支持向量机(SVM)、EEGNet、时间卷积神经网络(T-CNN)和CNN-LSTM混合模型对脑电数据进行解码。对于二元分类任务(最大的颜色差异),达到的最高准确率为81.93%,对于更细微的四类分类,达到的准确率为54.47%,显著超过随机机会。该研究首次证明了双眼色差可以通过脑电图信号客观解码,为视觉感知的神经机制提供了新的思路,为开发基于颜色的脑机接口(bci)奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信