AIChE JournalPub Date : 2024-12-10DOI: 10.1002/aic.18693
You Ma, Guozhi Qian, Mohsin Pasha, Yuhan Wang, Jiayi Li, Yuzhe Liu, Saier Liu, Xiao Xue, Min Qiu, Zihao Zhong, Minjing Shang, Jie Zheng, Zhigang Lin, Yuanhai Su
{"title":"Oxime ether photobromination in a photomicroreactor: Process parameters and kinetic modeling","authors":"You Ma, Guozhi Qian, Mohsin Pasha, Yuhan Wang, Jiayi Li, Yuzhe Liu, Saier Liu, Xiao Xue, Min Qiu, Zihao Zhong, Minjing Shang, Jie Zheng, Zhigang Lin, Yuanhai Su","doi":"10.1002/aic.18693","DOIUrl":"https://doi.org/10.1002/aic.18693","url":null,"abstract":"Photobromination reaction of oxime ether (OE) to brominated oxime ether (BOE) is an important process for the synthesis of trifloxystrobin in the fungicide industry. Herein, continuous synthesis of BOE in photomicroreactors was performed. Initially, an investigation was carried out to study the effects of various parameters, including mixing performance, molar ratios, solvents, incident photon flux, and temperature, on the photobromination process. Moreover, a kinetic model was established, and the activation energies for the main and side reactions were determined. The relationship between the reaction rate constant and light flux was illuminated. Transition states and energy changes in the bromination process were analyzed using density functional theory calculation. Remarkably, an 83.1% yield of BOE was achieved in the photomicroreactor and the required reaction time was reduced to approximately 1/10 of the batch reactor. This work was of crucial theoretical significance and practical value for better understanding of photobromination processes and parameter optimization.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"20 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142797389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-12-08DOI: 10.1002/aic.18687
Zhongzhe Wei, Guanglu Dong, Long Zhao, Songtao Huang, Molin Xia, Wei Huang, Ming Jiang, Zhixiang Yang, Zihao Yao, Jianfeng Li, Jianguo Wang
{"title":"Enhanced resistance to poisoning of Pd in alkynes semi-hydrogenation by metal–ligand electronic interactions","authors":"Zhongzhe Wei, Guanglu Dong, Long Zhao, Songtao Huang, Molin Xia, Wei Huang, Ming Jiang, Zhixiang Yang, Zihao Yao, Jianfeng Li, Jianguo Wang","doi":"10.1002/aic.18687","DOIUrl":"https://doi.org/10.1002/aic.18687","url":null,"abstract":"Given that the retention of nitrogen readily renders active site poisoning, designing versatile catalysts characterized by notable selectivity and even resistance to poisoning for alkyne semi-hydrogenation under nitrogen-containing conditions is considerably challenging. In this article, oxanilide-decorated Pd/C (Pd/C-oxa) catalyst is facilely synthesized by leveraging impregnation-coordination, which exhibit remarkable performance in the semi-hydrogenation of nitrogen-containing alkynes, with ultrahigh turnover frequency (TOF) of 15,831 h<sup>−1</sup> and selectivity of 97.2%. Strikingly, it still sustains TOF of 12,137 h<sup>−1</sup> in a sulfur-containing system, demonstrating distinguished tolerance to sulfur. Comprehensive studies corroborate that oxanilide tunes the electron density of Pd by constructing metal–ligand electronic interactions, facilitating hydrogen activation. Simultaneously, the reaction microenvironment is optimized, which effectively promotes the desorption of nitrogen-containing olefins and attenuates the aggregation of nitrogen on the Pd surface. This strategy is universal and holds promising industrial applications, making it appropriate for use in commercial Pd/C catalysts as well.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"82 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-12-08DOI: 10.1002/aic.18665
Linkai Han, Zhonghua Xiang
{"title":"Lattice modulation strategy toward efficient and durable RuO2-based catalysts for acidic water oxidation","authors":"Linkai Han, Zhonghua Xiang","doi":"10.1002/aic.18665","DOIUrl":"https://doi.org/10.1002/aic.18665","url":null,"abstract":"Rutile RuO<sub>2</sub> is recognized for its outstanding acidic oxygen evolution reaction (OER) activity and notable cost advantage compared to iridium oxide for proton exchange membrane water electrolyzers (PEMWEs). However, the unsatisfactory stability of RuO<sub>2</sub> hinders its practical application. Here, we report a lattice modulation strategy to enhance both the OER activity and stability of RuO<sub>2</sub>. Interestingly, the newly synthesized Mo<sub>0.15</sub>Nb<sub>0.05</sub>-RuO<sub>2</sub>, with Mo doped first and then Nb, presents the greatest lattice spacing and possesses an overpotential of merely 205 mV at 10 mA cm<sup>−2</sup>, which significantly outperforms Nb<sub>0.05</sub>Mo<sub>0.15</sub>-RuO<sub>2</sub> (239 mV), where Nb was doped first followed by Mo, as well as the initial RuO<sub>2</sub> (323 mV). Remarkably, Mo<sub>0.15</sub>Nb<sub>0.05</sub>-RuO<sub>2</sub> requires only 1.76 V to achieve 1 A cm<sup>−2</sup> and exhibits exceptional stability in PEMWE testing, with a voltage rise of only 58 mV at 200 mA cm<sup>−2</sup> for more than 80 h.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"11 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-12-08DOI: 10.1002/aic.18671
Qiong-Yu Wang, Yucheng Zhu, Run Jiang, Gan He, Jun Zhao, Jun Hu, Tao Liu, Honghai Liu, Siew-Leng Loo, Zhong Chen, Jie-Xin Wang, Zhiyan Pan, Xiaonian Li, Dapeng Cao, Zhong-Ting Hu
{"title":"Structure matching mechanism of nRu/FeCo2O4 for highly-selective oxidation of HMF toward FDCA","authors":"Qiong-Yu Wang, Yucheng Zhu, Run Jiang, Gan He, Jun Zhao, Jun Hu, Tao Liu, Honghai Liu, Siew-Leng Loo, Zhong Chen, Jie-Xin Wang, Zhiyan Pan, Xiaonian Li, Dapeng Cao, Zhong-Ting Hu","doi":"10.1002/aic.18671","DOIUrl":"https://doi.org/10.1002/aic.18671","url":null,"abstract":"The selective oxidation of 5-hydroxymethylfurfural (HMF) toward 2,5-furandicarboxylic acid (FDCA) offers a promising green pathway to obtain monomers for the synthesis of biodegradable plastics. However, developing a high-selectivity catalyst and understanding the catalytic mechanism are still great challenge. Here, we synthesize a nRu/FeCo<sub>2</sub>O<sub>4</sub> catalyst with Ru nanoparticles loaded on FeCo<sub>2</sub>O<sub>4</sub>. The nRu/FeCo<sub>2</sub>O<sub>4</sub> presents excellent HMF oxidation activity with 100% HMF conversion efficiency and 99% FDCA yield under optimized conditions. Density-functional theory calculations further reveal the structure matching mechanism of nRu/FeCo<sub>2</sub>O<sub>4</sub> for high-selective oxidation of HMF toward FDCA, that is, Ru loading in FeCo<sub>2</sub>O<sub>4</sub> provides a more suitable structure matching configuration for adsorption of two-side chains in HMF, which could optimize the adsorption energy and thus increase reactivity. In short, this work provides a promising structure matching strategy for designing dual-active-site relay catalyst to oxidize -CHO and C-OH groups in HMF and thus achieve highly-selective oxidation of HMF toward FDCA.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"12 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A five-fold twin structure copper for enhanced electrocatalytic nitrogen reduction to sustainable ammonia","authors":"Xiaoqing Yan, Ying Zhao, Yuzhe Zhang, Bowen Wang, Hanhong Fan, Honghui Ou, Xuelan Hou, Qizhong Huang, Huagui Hu, Guidong Yang","doi":"10.1002/aic.18654","DOIUrl":"https://doi.org/10.1002/aic.18654","url":null,"abstract":"Utilizing N₂ from the air and water for the electrocatalytic nitrogen reduction reaction shows promise for NH₃ synthesis under mild conditions. However, the chemical stability of N₂ and the thermodynamic limitations of NH₃ synthesis hinder its effectiveness. Herein, we integrated a specially designed Cu nanowire catalyst with a five-fold twin structure (T-CuNW) into an electrocatalytic system, combining electrocatalytic nitrogen reduction with nonthermal plasma-assisted N₂ activation. This work achieved an NH₃ yield of 45 mg·mg<sub>cat.</sub><sup>−1</sup>·h<sup>−1</sup> and a Faradaic efficiency of over 95% at −0.5 V versus RHE after a 90-h stability test. In situ characterization revealed that the T-CuNW's twin structure plays a crucial role for the generation of a large quantity of H<sub>ads</sub>, essential for the hydrogenation of nitrate intermediates, particularly nitrite (NO₂<sup>−</sup>). This enhanced hydrogenation process significantly contributes to the high performance of the ammonia synthesis system.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"34 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142788761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-12-07DOI: 10.1002/aic.18691
Matthew Lee Manion, Joshua Doctor, Albert Tianxiang Liu
{"title":"Temporally resolved concentration profiling via computationally limited, distributed sensor nodes","authors":"Matthew Lee Manion, Joshua Doctor, Albert Tianxiang Liu","doi":"10.1002/aic.18691","DOIUrl":"https://doi.org/10.1002/aic.18691","url":null,"abstract":"Accurate mapping of chemical concentrations in reactor networks remains an obstacle to establish complete systems-level insight and control. This issue extends beyond traditional reactor design to biological and other inaccessible systems of interest. Recent developments in novel materials with non-volatile memory allow autonomous sensor nodes to record information with minimal external supervision. Integrating these materials in solution suspended particles demonstrates the unique potential for diffuse measurements of chemical data at the microscale. In this study, we establish a generalized workflow for the simulated deployment of time aware particle sensors (TAPS) in ideal reactor systems to measure analyte profiles, using Gillespie kinetic Monte Carlo algorithms (KMC). Our results show that computationally-limited, chemically sensitive tracer particles capable of timestamping an analyte detection event can provide accurate analyte profiles throughout multistage reactors in an ensemble fashion.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"47 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142788673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultrafast synthesis and binder-free fabrication of a monolithic metal–organic framework for efficient carbon capture","authors":"Qi Ding, Yulong Liu, Jia Liu, Jingyue Cheng, Zhaoqiang Zhang, Kungang Chai, Sui Zhang","doi":"10.1002/aic.18673","DOIUrl":"https://doi.org/10.1002/aic.18673","url":null,"abstract":"Achieving rapid synthesis alongside efficient shaping without sacrificing high porosity and crystallinity poses significant challenges for metal–organic frameworks (MOFs) in practical applications. Here, we report an ultrafast, scalable method for preparing an ultramicroporous MOF at room temperature. This method achieves a space–time yield significantly higher than conventional MOF synthesis by orders of magnitude. As a result of strongly promoted crystal nucleation by careful selection of solvent and metal source, the MOF material is produced in a gel state offering both high crystallinity and processability. This allows for the binder-free fabrication of monolithic adsorbents with predesigned macro shapes and sizes. Owing to its narrowly distributed pore size and high-density open metal sites, the monolithic adsorbent demonstrates top-tier selectivity for CO<sub>2</sub>/N<sub>2</sub> (>200) and CO<sub>2</sub>/CH<sub>4</sub> separations. The performance sets a new benchmark among current MOF xero- or aerogel monoliths. Breakthrough experiments further verify its robust ability for carbon capture under dynamic conditions.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"60 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142788671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-12-07DOI: 10.1002/aic.18697
Jiarong Sang, Feng Wei, Junsu Jin
{"title":"The contact angle and structure of water on the graphite-like substrate: A classical density functional approach","authors":"Jiarong Sang, Feng Wei, Junsu Jin","doi":"10.1002/aic.18697","DOIUrl":"https://doi.org/10.1002/aic.18697","url":null,"abstract":"The influences of temperature and water−graphite interaction energy on the contact angle (<i>θ</i>) and structure of water on the graphite-like substrate have been investigated using the classical density functional theory. We find that the temperature-dependent behavior of cos<i>θ</i> is contingent upon the water−graphite interaction energy, manifesting in three distinct patterns: increasing, decreasing, or remaining nearly invariant with temperature within the examined range (273.16–640K). Furthermore, a novel simple equation has been derived to describe the temperature-dependent variation of cos<i>θ</i> at constant water−graphite interaction energy, that is, <span data-altimg=\"/cms/asset/2c57eb43-b526-412d-84e2-2636c4abe0e9/aic18697-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"4\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/aic18697-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"21,22\" data-semantic-content=\"6\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"partial differential cosine theta slash partial differential upper T equals lamda divided by left parenthesis gamma Superscript l v Baseline right parenthesis squared\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic-children=\"20,5\" data-semantic-content=\"4\" data-semantic- data-semantic-parent=\"23\" data-semantic-role=\"prefix operator\" data-semantic-type=\"infixop\"><mjx-mrow data-semantic-children=\"19\" data-semantic-content=\"0\" data-semantic- data-semantic-parent=\"21\" data-semantic-role=\"prefix operator\" data-semantic-type=\"prefixop\"><mjx-mi data-semantic- data-semantic-operator=\"prefixop,∂\" data-semantic-parent=\"20\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mi><mjx-mrow data-semantic-children=\"1,17\" data-semantic-content=\"18,1\" data-semantic- data-semantic-parent=\"20\" data-semantic-role=\"prefix function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"19\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"19\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"2\" data-semantic-content=\"3\" data-semantic- data-semantic-parent=\"19\" data-semantic-role=\"division\" data-semantic-type=\"postfixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"17\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"postfixop,/\" data-semantic-parent=\"17\" data-semantic-role=","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"17 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142788675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-12-06DOI: 10.1002/aic.18677
Le Zhou, Xin Zhang, Yu Han, Xin Li, Ze-Quan Zeng, Hai-Kui Zou, Yong Luo
{"title":"Insight into the synergetic solvent effect of H2O-ethanol on the adiponitrile hydrogenation","authors":"Le Zhou, Xin Zhang, Yu Han, Xin Li, Ze-Quan Zeng, Hai-Kui Zou, Yong Luo","doi":"10.1002/aic.18677","DOIUrl":"https://doi.org/10.1002/aic.18677","url":null,"abstract":"The Co@NC catalyst exhibits significant protic solvent preference for hydrogenation of nitriles to primary amines. However, the effect of mixed protic solvents on catalytic hydrogenation has received little attention. Herein, the synergetic solvent effect has been proposed to accelerate the hydrogenation of adiponitrile (ADN) to hexamethylenediamine through H<sub>2</sub>O-ethanol hydrogen bond networks on Co@NC catalyst. Experimental screenings on solvents showed that ADN conversion in H<sub>2</sub>O-ethanol was 1.6 ~ 5.1 times greater than in single solvents. Kinetic models in H<sub>2</sub>O/ethanol (<i>v</i><sub>W</sub> = 0.6), H<sub>2</sub>O, and ethanol showed that the solvents effected on H<sub>2</sub> transformation dominated the reaction. Isotope labelling and kinetic experiments revealed that H<sub>2</sub>O and ethanol acted as co-catalysts through exchanging and transferring hydrogen via hydroxyl groups. Density functional theory calculations confirmed that the energy barrier for proton transfer mediated by H₂O–ethanol was reduced by 0.18 eV compared to proton transfer mediated by H₂O–H₂O dimers.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"10 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIChE JournalPub Date : 2024-12-06DOI: 10.1002/aic.18660
Junfeng Lu, Tinglan Sun, Yumiao Lu, Hongyan He, Yanlei Wang
{"title":"Weakening origin of hydrogen bond in ionic liquid at the electrified interface","authors":"Junfeng Lu, Tinglan Sun, Yumiao Lu, Hongyan He, Yanlei Wang","doi":"10.1002/aic.18660","DOIUrl":"https://doi.org/10.1002/aic.18660","url":null,"abstract":"Hydrogen bonds (HBs) widely exist in applications ranging from biology to electrochemistry, where quantifying HB at the electrochemical interface poses significant challenges. Herein, we propose an approach to quantitatively decouple the electrostatic and van der Waals interactions of HBs in ionic liquids (ILs) by injecting electrons into the electrode interface. The charging process showed that the order of obtaining electrons is molybdenum disulfide > graphene > IL > boron nitride. Interestingly, the preferentially charged cations would lead to a direct reduction of coulombic interactions in HBs; in contrast, the charged substrate would repel the anion and weaken HBs indirectly. Infrared (IR) spectrum and covalent change analysis verified the charging-induced direct and indirect decoupling processes. Moreover, the energy analysis indicates that the electrostatic terms account for ~50% of HBs. These results on the weakening origin of HBs can guide the molecular design of ILs toward high-performance electrochemical applications.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"216 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}