European Journal of Soil Biology最新文献

筛选
英文 中文
Differences in succession of bacterial communities during co-cultivation of corn straw with different soils 玉米秸秆与不同土壤共耕期间细菌群落演替的差异
IF 3.7 2区 农林科学
European Journal of Soil Biology Pub Date : 2024-10-13 DOI: 10.1016/j.ejsobi.2024.103683
Shuang Liu, Qingxin Meng, Yujia Li, Zhigang Wang, Weihui Xu, Yingning Sun, Zhidan Yu, Yunlong Hu
{"title":"Differences in succession of bacterial communities during co-cultivation of corn straw with different soils","authors":"Shuang Liu,&nbsp;Qingxin Meng,&nbsp;Yujia Li,&nbsp;Zhigang Wang,&nbsp;Weihui Xu,&nbsp;Yingning Sun,&nbsp;Zhidan Yu,&nbsp;Yunlong Hu","doi":"10.1016/j.ejsobi.2024.103683","DOIUrl":"10.1016/j.ejsobi.2024.103683","url":null,"abstract":"<div><div>Managing carbon inputs from straw can pave the way towards carbon neutrality and climate change mitigation. Straw decomposition by cooperative microbial actions is an important process of carbon cycling in nature, and in this process, microbial communities are constantly in succession. Soil is rich in microorganisms and can be a source of microbial for straw degradation. In this study, corn straw was mixed with different soil types and incubated in conical flasks for 70 days. Bacterial diversity and community structure were determined using 16S rRNA sequencing. Then, the effects of physicochemical parameters and enzyme activities on the composition of bacterial communities at different stages were evaluated. The results showed that bacterial diversity decreased during co-cultivation. The differences in bacterial communities between all treatments were greater in the later stages, with Pseudomonadota, Actinomycetota, and Bacillota as the major phyla. Among them, the biomarkers at different times for different treatments included <em>Sphingomonas</em>, <em>Mycobacterium</em>, <em>Oceanobacillus</em>, <em>Streptomyces</em>, <em>Pseudomonas</em>, <em>Flavobacterium</em>, and <em>Saccharomonospora</em>. All of them showed cellulose degradation capacity; thus, the organic matter gradually decreased during the co-cultivation. Canonical correspondence analysis (CCA) showed that pH, organic matter (OM), electrical conductivity (EC), cellulase, β-glucosidase, and filter paper (FPase) activities had a significant effect on bacterial communities at different stages. Our findings suggested that soil microbial communities can be an effective source of cellulose-degrading microorganisms, and corn straw co-cultivation with different soil types increased the abundance of cellulose-degrading bacteria, which provides the theoretical basis for efficient cellulose-degrading agent screening.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"123 ","pages":"Article 103683"},"PeriodicalIF":3.7,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The combined nitrogen and phosphorus fertilizer application reduced soil multifunctionality in Qinghai-Tibet plateau grasslands, China 氮磷联合施肥降低了中国青藏高原草地的土壤多功能性
IF 3.7 2区 农林科学
European Journal of Soil Biology Pub Date : 2024-10-12 DOI: 10.1016/j.ejsobi.2024.103684
Yang Wu , HuaKun Zhou , WenJing Chen , HaoXiang Xue , HongFei Liu , Jie Wang , ShaoJuan Mao , GuoBin Liu , Sha Xue
{"title":"The combined nitrogen and phosphorus fertilizer application reduced soil multifunctionality in Qinghai-Tibet plateau grasslands, China","authors":"Yang Wu ,&nbsp;HuaKun Zhou ,&nbsp;WenJing Chen ,&nbsp;HaoXiang Xue ,&nbsp;HongFei Liu ,&nbsp;Jie Wang ,&nbsp;ShaoJuan Mao ,&nbsp;GuoBin Liu ,&nbsp;Sha Xue","doi":"10.1016/j.ejsobi.2024.103684","DOIUrl":"10.1016/j.ejsobi.2024.103684","url":null,"abstract":"<div><div>The impact of nitrogen (N) and phosphorus (P) fertilizer inputs on soil nutrient cycling and ecological function processes has garnered significant attention. Soil multifunctionality primarily refers to the soil's ability to perform multiple functions simultaneously, particularly the functions related to the genes involved in carbon (C), nitrogen (N), and phosphorus (P) cycles, which are critical for ecosystem sustainability. Despite this, the effects of N and P fertilizers on the expression of genes involved in soil carbon (C), nitrogen (N), and phosphorus (P) cycles, and their consequent influence on soil multifunctionality, remain unclear. To investigate this, we conducted a long-term nine-year experiment. The experimental site was fenced to prevent grazing and included four treatments: Control (no fertilizer), N (10 g N m<sup>−2</sup> y<sup>−1</sup>, urea), P (5 g P m<sup>−2</sup> y<sup>−1</sup>, Ca(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>), and NP (10 g N and 5 g P m<sup>−2</sup> y<sup>−1</sup>, urea and Ca(H<sub>2</sub>PO<sub>4</sub>)<sub>2</sub>). We examined the effects of these treatments on soil microbial functional gene abundance and multifunctionality. Our findings revealed that N addition altered the composition of soil microbial functional genes but did not affect functional diversity. Both N and P inputs, as well as their combination, negatively impacted soil carbon fixation and the genes encoding enzymes for the degradation of starch, hemicellulose, cellulose, and chitin. N input also disrupted soil nitrogen and phosphorus cycling by inhibiting the expression of soil denitrification genes (<em>nirS</em> and <em>nosZ</em>), phytate hydrolase gene (<em>cphy</em>), and a phosphatase gene (<em>phoD</em>). Additionally, P input significantly inhibited functional genes involved in soil nitrification, denitrification, ammonification, nitrogen fixation, and ammonia oxidation processes. It also adversely affected phytate synthesis and degradation. The combined N and P inputs had a substantial negative impact on soil nitrification (<em>hao</em>), denitrification (<em>narG</em>, <em>nirK</em>, <em>nirS</em>, and <em>norZ</em>), ammonification (<em>gdh</em>), nitrogen fixation, annamox, and nitrogen reduction, and inhibited the expression of soil phosphorus cycle genes. Long-term phosphorus application was found to have a more detrimental effect on soil multifunctionality compared to nitrogen application. Furthermore, our study showed that vegetation diversity and abundance are crucial drivers of soil carbon, nitrogen, and phosphorus cycling functional genes and multifunctionality. We concluded that N and P inputs alter soil multifunctionality by influencing vegetation diversity; therefore, maintaining vegetation diversity is essential for sustaining soil multifunctionality.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"123 ","pages":"Article 103684"},"PeriodicalIF":3.7,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142420026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacteria contribute more than fungi to SOC decomposition in a paddy field under long-term free-air CO2 enrichment 在长期自由空气二氧化碳富集条件下,细菌比真菌对稻田中 SOC 分解的贡献更大
IF 3.7 2区 农林科学
European Journal of Soil Biology Pub Date : 2024-10-02 DOI: 10.1016/j.ejsobi.2024.103682
Meiling Xu , Feifan Zhang , Ling Zhang , Hongze Zhang , Caixian Tang , Xiaozhi Wang , Jing Ma , Qiao Xu
{"title":"Bacteria contribute more than fungi to SOC decomposition in a paddy field under long-term free-air CO2 enrichment","authors":"Meiling Xu ,&nbsp;Feifan Zhang ,&nbsp;Ling Zhang ,&nbsp;Hongze Zhang ,&nbsp;Caixian Tang ,&nbsp;Xiaozhi Wang ,&nbsp;Jing Ma ,&nbsp;Qiao Xu","doi":"10.1016/j.ejsobi.2024.103682","DOIUrl":"10.1016/j.ejsobi.2024.103682","url":null,"abstract":"<div><div>Microbial responses to future climate change are important in determining soil organic carbon cycling and evaluating carbon-climate feedback. Paddy soils from a 15-year free-air CO<sub>2</sub> enrichment (FACE) experiment were incubated and analyzed to reveal the responses of soil microbial activity, community diversity and composition to the soil depth and elevated CO<sub>2</sub>. Network topology analysis was conducted to determine microbial complexity and stability, and Mantel tests were used to analyze the correlation between bacteria and fungi and soil respiration. Elevated CO<sub>2</sub> stimulated cumulative soil respiration (topsoil 6.2 %, subsoil 21.8 %), which was positively correlated with bacterial diversity. The elevated CO<sub>2</sub> effects on the microbial community were greater in the topsoil than in the subsoil, namely, bacterial diversity was increased by 2.1 % in the topsoil (0–15 cm). Elevated CO<sub>2</sub> also increased the abundance of Nitrospirota in the top- but not in the subsoil. Fungal diversity and phyla were not affected by elevated CO<sub>2</sub>, but fungal diversity was significantly correlated with the contents of soil DOC, total dissolved N, and total P in the subsoil. Compared to the subsoil, bacterial richness was higher in topsoil, and more Ascomycota was found but fewer Mortierellomycota; the microbial network had a greater number of nodes and edges. These results suggested that 1) depth was a major factor affecting soil properties that determine microbial community and function; 2) bacterial taxa were more sensitive to elevated CO<sub>2</sub> than fungal taxa; 3) elevated CO<sub>2</sub> increased SOC decomposition directly via enhanced soil C availability and altered bacterial diversity and microbial complexity and stability.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"123 ","pages":"Article 103682"},"PeriodicalIF":3.7,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142420021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing crop yield and microbial diversity in saline-affected paddy soil through biochar amendment under aquaculture wastewater irrigation 在水产养殖废水灌溉条件下,通过生物炭改良提高受盐碱影响的稻田土壤中的作物产量和微生物多样性
IF 3.7 2区 农林科学
European Journal of Soil Biology Pub Date : 2024-09-26 DOI: 10.1016/j.ejsobi.2024.103681
Xuli Zhao , Hans-Peter Grossart
{"title":"Enhancing crop yield and microbial diversity in saline-affected paddy soil through biochar amendment under aquaculture wastewater irrigation","authors":"Xuli Zhao ,&nbsp;Hans-Peter Grossart","doi":"10.1016/j.ejsobi.2024.103681","DOIUrl":"10.1016/j.ejsobi.2024.103681","url":null,"abstract":"<div><div>Biochar is frequently employed to ameliorate saline-affected paddy soil. However, there are controversial research findings regarding the applicability of biochar for the enhancement of soil physicochemical properties and agricultural (crop) yield, particularly under conditions of wastewater irrigation in agricultural production. This study investigates the effects of controlled soil salinity levels (1 ‰ and 3 ‰), induced using sodium chloride, and the targeted application of biochar in a pot experiment. The study examines the impact on physicochemical characteristics of different soil layers, physicochemical properties, and physiological responses of rice plants irrigated with aquaculture wastewater. It also delves into soil microbial diversity and the predominant bacterial species. The research findings reveal that biochar exerts a significant influence on soil properties and nitrogen content in saline environments. The addition of biochar enhanced soil electrical conductivity (EC), modulated the distribution of organic carbon, and altered nitrogen transformation processes within the soil. Consequently, biochar application resulted in a 14.2 % and 6.81 % increase in rice yield at 1 ‰ and 3 ‰ salinity levels, respectively. Furthermore, biochar increased leaf area by 25.3 % and 45.9 % in 1 ‰ and 3 ‰ salinity stress separately and enhanced the nitrogen content (TN) in leaves by 28.6 % when the soil salinity is 1 g/kg, demonstrating a positive impact on nitrogen uptake. Additionally, biochar has shown potential in mitigating nitrous oxide (N<sub>2</sub>O) emissions. Its addition led to a reduction in the relative abundance of <em>Actinobacteria</em> while increasing the relative abundance of <em>Firmicutes</em>. These findings provide novel insights into the transformative potential of biochar in improving the characteristics of saline paddy soil and augmenting rice yield when used in conjunction with aquaculture wastewater irrigation.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"123 ","pages":"Article 103681"},"PeriodicalIF":3.7,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic application of biochar with organic fertilizer positively impacts the soil micro-food web in sandy loam soils 生物炭与有机肥的协同应用对沙壤土中的土壤微观食物网产生积极影响
IF 3.7 2区 农林科学
European Journal of Soil Biology Pub Date : 2024-09-25 DOI: 10.1016/j.ejsobi.2024.103680
Wanlin Zhuang , Cancan Zhao , Yaojun Zhang , Zhongling Yang , Guoyong Li , Lei Su , Shixiu Zhang
{"title":"Synergistic application of biochar with organic fertilizer positively impacts the soil micro-food web in sandy loam soils","authors":"Wanlin Zhuang ,&nbsp;Cancan Zhao ,&nbsp;Yaojun Zhang ,&nbsp;Zhongling Yang ,&nbsp;Guoyong Li ,&nbsp;Lei Su ,&nbsp;Shixiu Zhang","doi":"10.1016/j.ejsobi.2024.103680","DOIUrl":"10.1016/j.ejsobi.2024.103680","url":null,"abstract":"<div><div>Effective application of biochar is critical to improving soil health, but its intricate biological impact on the soil micro-food web remains poorly understood. To address this, a field experiment with four treatments - inorganic fertilization (IF), organic fertilization (OF), inorganic fertilization with biochar addition (B + IF), and organic fertilization with biochar addition (B + OF) - was conducted within a wheat cropping system on a sandy loam soil. The study aimed to elucidate the role of biochar-induced changes in abiotic factors and plant root inputs in shaping the soil micro-food web. Results showed that the effects of biochar on the soil micro-food web varied depending on the fertilization context. Under inorganic fertilizer, biochar strongly increased the abundance of total microbes and total nematodes, but reduced the biomass of omnivores-predators. However, biochar combined with organic fertilizer had a positive effect on the abundance and biomass of total microbes as well as the biomass of total nematodes and omnivores-predators. In addition, biochar with inorganic fertilizer affected the abundance of microbes and nematodes through direct pathways and indirectly affected microbial biomass and abundance mediated by reducing NH<sub>4</sub><sup>+</sup>-N and DOC content. In contrast, in organic fertilization, the improvement of root biomass and soil pH were the most direct drivers of variation in microbial abundance. These findings highlight the potential of biochar as a strategic amendment to optimize soil micro-food web dynamics, with fertilizer type playing a critical role in determining its effectiveness. The combination of biochar with organic fertilizer provides a basis for improving soil health and supporting sustainable agricultural practices on sandy loam soils.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"123 ","pages":"Article 103680"},"PeriodicalIF":3.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fire alters soil bacterial and fungal communities and intensifies seasonal variation in subtropical forest ecosystem 火灾改变了土壤细菌和真菌群落,加剧了亚热带森林生态系统的季节性变化
IF 3.7 2区 农林科学
European Journal of Soil Biology Pub Date : 2024-09-18 DOI: 10.1016/j.ejsobi.2024.103677
Ziyue Shi , Yaru Chen , Aogui Li , Mengjun Hu , Weixing Liu
{"title":"Fire alters soil bacterial and fungal communities and intensifies seasonal variation in subtropical forest ecosystem","authors":"Ziyue Shi ,&nbsp;Yaru Chen ,&nbsp;Aogui Li ,&nbsp;Mengjun Hu ,&nbsp;Weixing Liu","doi":"10.1016/j.ejsobi.2024.103677","DOIUrl":"10.1016/j.ejsobi.2024.103677","url":null,"abstract":"<div><p>Soil microbes stand as pivotal constituents and perform important ecological functions in forest ecosystems due to their extensive diversity. The increasing frequency of forest fire, coupled with the accelerating global warming, has resulted in changes in environmental conditions and forest structure, consequently influencing soil microbial communities. Despite this, there is a lack of comprehensive understanding regarding the impacts of fire on soil bacterial and fungal communities. Based on a fire experimental study in subtropical forest ecosystem, we investigated the alterations in soil properties and microbial community across two seasons. The results showed that soil bacterial richness remained unchanged by fire in both seasons. In contrast, soil fungal richness decreased in spring but increased in autumn at burnt sites, indicating the amplified seasonal variation induced by fire. In addition, fire had a significant impact on soil microbial community composition. Specifically, it elevated the relative abundance of Actinobacteriota but reduced that of Acidobacteriota and Verrucomicrobiota, which was related to increased temperature, pH, and decreased nitrogen resulting from fire. The relative abundance of Ascomycota increased following fire, whereas the relative abundance of Basidiomycota decreased. These shifts in soil fungal community were mainly related to lower soil carbon:nitrogen ratio. Furthermore, bacterial community was more responsive to environmental changes than fungal community. Overall, our study demonstrates soil microbial diversity and community structure in response to forest fire and the driving factors, advancing our comprehension of soil microbial dynamics in forest ecosystems under environmental perturbations.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"123 ","pages":"Article 103677"},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Planting Chinese milk vetch with phosphate-solubilizing bacteria inoculation enhances phosphorus turnover by altering the structure of the phoD-harboring bacteria community 在种植中国牛奶面包时接种磷酸盐溶解菌,通过改变噬磷菌群落的结构提高磷周转率
IF 3.7 2区 农林科学
European Journal of Soil Biology Pub Date : 2024-09-16 DOI: 10.1016/j.ejsobi.2024.103678
Danna Chang , Yarong Song , Hai Liang , Rui Liu , Cheng Cai , Shuailei Lv , Yulin Liao , Jun Nie , Tingyu Duan , Weidong Cao
{"title":"Planting Chinese milk vetch with phosphate-solubilizing bacteria inoculation enhances phosphorus turnover by altering the structure of the phoD-harboring bacteria community","authors":"Danna Chang ,&nbsp;Yarong Song ,&nbsp;Hai Liang ,&nbsp;Rui Liu ,&nbsp;Cheng Cai ,&nbsp;Shuailei Lv ,&nbsp;Yulin Liao ,&nbsp;Jun Nie ,&nbsp;Tingyu Duan ,&nbsp;Weidong Cao","doi":"10.1016/j.ejsobi.2024.103678","DOIUrl":"10.1016/j.ejsobi.2024.103678","url":null,"abstract":"<div><p>This study aimed to reveal how planting Chinese milk vetch (CMV) as green manure in combination with phosphate-solubilizing bacteria-based biofertilizer can enhance phosphorus (P) utilization in CMV-rice crop rotations. The pot experiment included two factors: the presence of <em>Acinetobacter calcoaceticus</em> (<em>ACC</em>) inoculation, and the variety of CMV (six varieties), resulting in 12 treatments. The experiment lasted for 190 d and soil and plants were analyzed thereafter. <em>ACC</em> inoculation increased the average shoot dry weight by 37.1 % and P uptake by 73.9 % of CMV, and increased the average content of soil labile P by 9.2 %; decreased the average content of moderately labile P by 6.9 % and stable P by 5.4 %, compared to control. <em>ACC</em> inoculation increased the average concentrations of acetic acid, gluconic acid, oxalic acid, citric acid, acid phosphatase and alkaline phosphatase. Structural equation model showed that organic acid and phosphatase correlated with soil labile and moderately labile P pools. The average abundance and diversity of the alkaline phosphatase gene (<em>phoD</em>) and the proportion of dominant species in the mineralization of organic P (<em>Streptomycetaceae</em>) increased under <em>ACC</em> inoculation. Thus, planting CMV with <em>ACC</em> inoculation increased the average concentrations of organic acid and alkaline phosphatase, activating insoluble inorganic P and organic P. However, their combination enhanced the average abundance and altered the structure of the <em>phoD</em>-harboring bacteria community, which in turn promoted organic P mineralization. Planting Chinese milk vetch with <em>Acinetobacter calcoaceticus</em> inoculation can effectively utilize P in paddy soil, which can enhance P availability for subsequent rice crops.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"123 ","pages":"Article 103678"},"PeriodicalIF":3.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of biochar addition on earthworm enhanced N2O emission 添加生物碳对蚯蚓增强一氧化二氮排放的影响
IF 3.7 2区 农林科学
European Journal of Soil Biology Pub Date : 2024-09-14 DOI: 10.1016/j.ejsobi.2024.103679
Yupeng Wu , Yanbin Jiang , Hong Di , Juan Liu , Yaoxiong Lu , Muhammad Shaaban
{"title":"Effects of biochar addition on earthworm enhanced N2O emission","authors":"Yupeng Wu ,&nbsp;Yanbin Jiang ,&nbsp;Hong Di ,&nbsp;Juan Liu ,&nbsp;Yaoxiong Lu ,&nbsp;Muhammad Shaaban","doi":"10.1016/j.ejsobi.2024.103679","DOIUrl":"10.1016/j.ejsobi.2024.103679","url":null,"abstract":"<div><p>The application of biochar has been shown to suppress soil nitrous oxide (N<sub>2</sub>O) emissions. Earthworms, a key component of soil fauna, are known to increase N₂O production. While existing research has focused mainly on soil physicochemical management and microbial interactions, limited attention has been paid to how biochar interacts with soil fauna in relation to N₂O emissions. To investigate this, an incubation experiment was conducted to analyze how various biochars, including corn straw (CS), rice straw (RS), wheat straw (WS), nutshell (NS), wood chip (WC), rice husk (RH), apricot shell (AS), and peach shell (PS) biochar, affect earthworm (<em>Amynthas cortices</em>) enhanced N<sub>2</sub>O emissions. Biochar addition reduced earthworm enhanced N₂O production and decreased the cumulative earthworm burrowing length compared to control. Rice straw biochar was the most effective, releasing the lowest earthworm enhanced N<sub>2</sub>O emission at 73 μg kg<sup>−1</sup> soil and having the shortest cumulative burrowing length at 48.6 cm, whereas wood chip biochar had the least impact, with earthworm enhanced N<sub>2</sub>O reaching 307 μg kg<sup>−1</sup> soil. The drilosphere influenced by earthworms' activity demonstrated increased pH, C/N ratio, mineral nitrogen (MN), dissolved organic carbon (DOC), and microbial biomass carbon (MBC) compared to the bulk soil, though the extent of these changes varied with the type of biochar applied. The biochar addition altered the micro-environment within the earthworm gut, including O<sub>2</sub> concentration and pH levels, thereby affecting the N<sub>2</sub>O related microbial community in the drilosphere. This was evidenced by changes in the ratio of <em>nirK</em> + <em>nirS</em> to <em>nosZ</em> genes and the abundance of ammonia-oxidizing archaea and bacteria gene copies. Hierarchical partitioning analysis revealed that the biochar's properties primarily influenced earthworm burrowing activity, the dominant factor affecting earthworm enhanced N<sub>2</sub>O emissions, followed by MN, DOC, and MBC content in the drilosphere. The impact of gut-derived microbes on N<sub>2</sub>O emissions was comparatively insignificant. These findings highlight that biochar amendment can mitigate earthworm induced N<sub>2</sub>O emissions, primarily by modifying earthworm activity, which is strongly influenced by the biochar's physicochemical characteristics.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"123 ","pages":"Article 103679"},"PeriodicalIF":3.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Addition of polyester microplastic fibers to soil alters the diversity and abundance of arbuscular mycorrhizal fungi and affects plant growth and nutrition 在土壤中添加聚酯微塑料纤维会改变丛枝菌根真菌的多样性和丰度,并影响植物的生长和营养
IF 3.7 2区 农林科学
European Journal of Soil Biology Pub Date : 2024-08-29 DOI: 10.1016/j.ejsobi.2024.103666
Eric Kanold , Serra-Willow Buchanan , Micaela Tosi , Catherine Fahey , Kari E. Dunfield , Pedro M. Antunes
{"title":"Addition of polyester microplastic fibers to soil alters the diversity and abundance of arbuscular mycorrhizal fungi and affects plant growth and nutrition","authors":"Eric Kanold ,&nbsp;Serra-Willow Buchanan ,&nbsp;Micaela Tosi ,&nbsp;Catherine Fahey ,&nbsp;Kari E. Dunfield ,&nbsp;Pedro M. Antunes","doi":"10.1016/j.ejsobi.2024.103666","DOIUrl":"10.1016/j.ejsobi.2024.103666","url":null,"abstract":"<div><p>Microplastics (MPs) represent an emerging factor in global environmental change and are increasingly found in soils. However, the extent to which they affect plants and their interactions with the soil microbiome is poorly understood. Here, we test the hypothesis that increasing levels of polyester MP fibers in soil alter plant growth and nutrient acquisition responses to arbuscular mycorrhizal (AM) fungi via changes in AM fungal colonization and community composition. We used <em>Sorghum drummondii</em> as a model species in a fully factorial greenhouse experiment. Plants were exposed to soil treatments with 0, 0.2, 1, and 3 % MP polyester fibers either in the presence or absence of an assembled AM fungal community comprising 13 species across three families with contrasting life-history strategies. We found that the 1 % MP treatment promoted plant biomass irrespective of the presence of AM fungi. While no changes in macronutrient concentrations in plant tissues were seen, there was a significant increase in B and Mn when relatively low amounts of MPs were added, and this effect was modulated by AM fungi. Furthermore, there were shifts in AM fungal community composition in response to MP, favoring taxa such as <em>Gigaspora</em> sp. while negatively affecting ruderal taxa like <em>Glomus</em> sp. Overall, our data indicate that MP polyester fibers present in soil can in some cases be beneficial to plants and AM fungal interactions. However, the implications of these findings over the long-term and in the context of ecological repercussions of MP pollution in the environment remain to be seen.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103666"},"PeriodicalIF":3.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1164556324000724/pdfft?md5=d93846d336339efabf2af405cf396758&pid=1-s2.0-S1164556324000724-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The diversity of soil-dwelling arthropods is significantly influenced by land use systems with tree cover in semiarid conditions 在半干旱条件下,有树木覆盖的土地利用系统对土栖节肢动物的多样性影响很大
IF 3.7 2区 农林科学
European Journal of Soil Biology Pub Date : 2024-08-27 DOI: 10.1016/j.ejsobi.2024.103667
Neilson Rocha da Silva , Jamili Silva Fialho , Anacláudia Alves Primo , José Ferreira Lustosa Filho , Carla Ferreira Rezende , Mônica Matoso Campanha , Vanessa Maria de Souza Barros , Teogenes Senna de Oliveira
{"title":"The diversity of soil-dwelling arthropods is significantly influenced by land use systems with tree cover in semiarid conditions","authors":"Neilson Rocha da Silva ,&nbsp;Jamili Silva Fialho ,&nbsp;Anacláudia Alves Primo ,&nbsp;José Ferreira Lustosa Filho ,&nbsp;Carla Ferreira Rezende ,&nbsp;Mônica Matoso Campanha ,&nbsp;Vanessa Maria de Souza Barros ,&nbsp;Teogenes Senna de Oliveira","doi":"10.1016/j.ejsobi.2024.103667","DOIUrl":"10.1016/j.ejsobi.2024.103667","url":null,"abstract":"<div><p>Seasonal changes in vegetation and climate exert significant influences on soil fauna in natural and agricultural ecosystems. Additionally, evidence indicates that interactions between different plant layers promote soil fauna diversity through the variety of resources available. The objective was to assess the edaphic fauna in traditional land use systems, agroforestry systems and natural vegetation, under the influence of rainfall seasonality and plant strata in the semiarid region of Brazil. For this purpose, six types of land use were selected: agroforestry; silvopastoral; slash and burn with intensive use without fallow; slash and burn with six years of fallow; slash and burn with nine years of fallow; and a system representing the natural vegetation of the Caatinga. Edaphic fauna was collected using pitfall traps in the dry and rainy seasons. A total of 43,363 individuals of the edaphic fauna were collected and grouped into taxa, determining abundance, diversity and functional groups. The results revealed higher abundance and diversity of edaphic fauna in the rainy season across all land use systems, but significantly higher numbers in systems with tree strata. The greater the abundance, richness and diversity of trees, the higher the diversity of edaphic fauna (Shannon Index - H: 0.7 &lt; ‾H &lt; 1) for the seasonal effect. Agroforestry systems were intermediate in the diversity of edaphic fauna (‾H &lt; 0.8) compared to other systems. Systems with greater heterogeneity in tree and herbaceous strata were the ones that most increased the diversity and activity of functional groups of edaphic fauna (H &lt; 0.8; 0.5 &lt; r &lt; 0.9). In semiarid conditions, more attention should be given to agricultural production systems with greater tree diversity and interaction between tree and herbaceous strata to conserve the biodiversity of edaphic fauna and improve the soil health.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103667"},"PeriodicalIF":3.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信