{"title":"Railway platform reallocation after dynamic perturbations using ant colony optimisation","authors":"Jayne Eaton, Shengxiang Yang","doi":"10.1109/SSCI.2016.7849965","DOIUrl":"https://doi.org/10.1109/SSCI.2016.7849965","url":null,"abstract":"Train delays at stations are a common occurrence in complex, busy railway networks. A delayed train will miss its scheduled time slot on the platform and may have to be reallocated to a new platform to allow it to continue its journey. The problem is a dynamic one because while reallocating a delayed train further unanticipated train delays may occur, changing the nature of the problem over time. Our aim in this study is to apply ant colony optimisation (ACO) to a dynamic platform reallocation problem (DPRP) using a model created from real-world train schedule data. To ensure that trains are not unnecessarily reallocated to new platforms we introduce a novel best-ant-replacement scheme that takes into account not only the objective value but also the physical distance between the original and the new platforms. Results showed that the ACO algorithm outperformed a heuristic that places the delayed train in the first available time-slot and that this improvement was more apparent with high-frequency dynamic changes.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130825586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An ensemble of single multiplicative neuron models for probabilistic prediction","authors":"U. Yolcu, Yaochu Jin, E. Eğrioğlu","doi":"10.1109/SSCI.2016.7849975","DOIUrl":"https://doi.org/10.1109/SSCI.2016.7849975","url":null,"abstract":"Inference systems basically aim to provide and present the knowledge (outputs) that decision-makers can take advantage of in their decision-making process. Nowadays one of the most commonly used inference systems for time series prediction is the computational inference system based on artificial neural networks. Although they have the ability of handling uncertainties and are capable of solving real life problems, neural networks have interpretability issues with regard to their outputs. For example, the outputs of neural networks that are difficult to interpret compared to statistical inference systems' outputs that involve a confidence interval and probabilities about possible values of predictions on top of the point estimations. In this study, an ensemble of single multiplicative neuron models based on bootstrap technique has been proposed to get probabilistic predictions. The main difference of the proposed ensemble model compared to conventional neural network models is that it is capable of getting a bootstrap confidence interval and probabilities of predictions. The performance of the proposed model is demonstrated on different time series. The obtained results show that the proposed ensemble model has a superior prediction performance in addition to having outputs that are more interpretable and applicable to probabilistic evaluations than conventional neural networks.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130443887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Pérez-Ortiz, Pedro Antonio Gutiérrez, Mariano Carbonero-Ruz, C. Hervás‐Martínez
{"title":"Adapting linear discriminant analysis to the paradigm of learning from label proportions","authors":"M. Pérez-Ortiz, Pedro Antonio Gutiérrez, Mariano Carbonero-Ruz, C. Hervás‐Martínez","doi":"10.1109/SSCI.2016.7850150","DOIUrl":"https://doi.org/10.1109/SSCI.2016.7850150","url":null,"abstract":"The recently coined term “learning from label proportions” refers to a new learning paradigm where training data is given by groups (also denoted as “bags”), and the only known information is the label proportion of each bag. The aim is then to construct a classification model to predict the class label of an individual instance, which differentiates this paradigm from the one of multi-instance learning. This learning setting presents very different applications in political science, marketing, healthcare and, in general, all fields in relation with anonymous data. In this paper, two new strategies are proposed to tackle this kind of problems. Both proposals are based on the optimisation of pattern class memberships using the data distribution in each bag and the known label proportions. To do so, linear discriminant analysis has been reformulated to work with non-crisp class memberships. The experimental part of this paper sets different objetives: 1) study the difference in performance, comparing our proposals and the fully supervised setting, 2) analyse the potential benefits of refining class memberships by the proposed approaches, and 3) test the influence of other factors in the performance, such as the number of classes or the bag size. The results of these experiments are promising, but further research should be encouraged for studying more complex data configurations.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129288545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SIMARD: A simulated annealing based RNA design algorithm with quality pre-selection strategies","authors":"Sinem Sav, David J. D. Hampson, Herbert H. Tsang","doi":"10.1109/SSCI.2016.7849957","DOIUrl":"https://doi.org/10.1109/SSCI.2016.7849957","url":null,"abstract":"Most of the biological processes including expression levels of genes and translation of DNA to produce proteins within cells depend on RNA sequences, and the structure of the RNA plays vital role for its function. RNA design problem refers to the design of an RNA sequence that folds into given secondary structure. However, vast number of possible nucleotide combinations make this an NP-Hard problem. To solve the RNA design problem, a number of researchers have tried to implement algorithms using local stochastic search, context-free grammars, global sampling or evolutionary programming approaches. In this paper, we examine SIMARD, an RNA design algorithm that implements simulated annealing techniques. We also propose QPS, a mutation operator for SIMARD that pre-selects high quality sequences. Furthermore, we present experiment results of SIMARD compared to eight other RNA design algorithms using the Rfam datset. The experiment results indicate that SIMARD shows promising results in terms of Hamming distance between designed sequence and the target structure, and outperforms ERD in terms of free energy.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128823655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Koutsoukos, Georgios Alexandridis, Georgios Siolas, A. Stafylopatis
{"title":"A new approach to session identification by applying fuzzy c-means clustering on web logs","authors":"D. Koutsoukos, Georgios Alexandridis, Georgios Siolas, A. Stafylopatis","doi":"10.1109/SSCI.2016.7849939","DOIUrl":"https://doi.org/10.1109/SSCI.2016.7849939","url":null,"abstract":"In this paper a new algorithm for session identification in web logs is outlined, based on the fuzzy c-means clustering of the available data. The novelty of the proposed methodology lies in the initialization of the partition matrix using subtractive clustering, the examination of the effect a variety of distance metrics have on the clustering process (in addition to the widely-used Euclidean distance), the determination of the number of user sessions based on candidate sessions and the representation of the session data. The experimental results show that the proposed methodology is effective in the reconstruction of user sessions and can distinguish individual sessions more accurately than baseline time-heuristic methods proposed in literature.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126219398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A direct memetic approach to the solution of Multi-Objective Optimal Control Problems","authors":"M. Vasile, Lorenzo A. Ricciardi","doi":"10.1109/SSCI.2016.7850103","DOIUrl":"https://doi.org/10.1109/SSCI.2016.7850103","url":null,"abstract":"This paper proposes a memetic direct transcription algorithm to solve Multi-Objective Optimal Control Problems (MOOCP). The MOOCP is first transcribed into a Non-linear Programming Problem (NLP) with Direct Finite Elements in Time (DFET) and then solved with a particular formulation of the Multi Agent Collaborative Search (MACS) framework. Multi Agent Collaborative Search is a memetic algorithm in which a population of agents combines local search heuristics, exploring the neighbourhood of each agent, with social actions exchanging information among agents. A collection of all Pareto optimal solutions is maintained in an archive that evolves towards the Pareto set. In the approach proposed in this paper, individualistic actions run a local search, from random points within the neighbourhood of each agent, solving a normalised Pascoletti-Serafini scalarisation of the multi-objective NLP problem. Social actions, instead, solve a bi-level problem in which the lower level handles only the constraint equations while the upper level handles only the objective functions. The proposed approach is tested on the multi-objective extensions of two well-known optimal control problems: the Goddard Rocket problem, and the maximum energy orbit rise problem.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121474727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new fast large neighbourhood search for service network design with asset balance constraints","authors":"Ruibin Bai, J. Woodward, N. Subramanian","doi":"10.1109/SSCI.2016.7850084","DOIUrl":"https://doi.org/10.1109/SSCI.2016.7850084","url":null,"abstract":"The service network design problem (SNDP) is a fundamental problem in consolidated freight transportation. It involves the determination of an efficient transportation network and the scheduling details of the corresponding services. Compared to vehicle routing problems, SNDP can model transfers and consolidations on a multi-modal freight network. The problem is often formulated as a mixed integer programming problem and is NP-Hard. In this research, we propose a new efficient large neighbourhood search function that can handle the constraints more efficiently. The effectiveness of this new neighbourhood is evaluated in a tabu search metaheuristic (TS) and a GLS guided local search (GLS) method. Experimental results based on a set of well-known benchmark instances show that the new neighbourhood performs significantly better than the previous arc-flipping neighbourhood. The neighbourhood function is also applicable in other optimisation problems with similar discrete constraints.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121475729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mapping spatio-temporally encoded patterns by reward-modulated STDP in Spiking neurons","authors":"Ibrahim Ozturk, D. Halliday","doi":"10.1109/SSCI.2016.7850248","DOIUrl":"https://doi.org/10.1109/SSCI.2016.7850248","url":null,"abstract":"In this paper, a simple structure of two-layer feed-forward spiking neural network (SNN) is developed which is trained by reward-modulated Spike Timing Dependent Plasticity (STDP). Neurons based on leaky integrate-and-fire (LIF) neuron model are trained to associate input temporal sequences with a desired output spike pattern, both consisting of multiple spikes. A biologically plausible Reward-Modulated STDP learning rule is used so that the network can efficiently converge optimal spike generation. The relative timing of pre- and postsynaptic firings can only modify synaptic weights once the reward has occurred. The history of Hebbian events are stored in the synaptic eligibility traces. STDP process are applied to all synapses with different delays. We experimentally demonstrate a benchmark with spatio-temporally encoded spike pairs. Results demonstrate successful transformations with high accuracy and quick convergence during learning cycles. Therefore, the proposed SNN architecture with modulated STDP can learn how to map temporally encoded spike trains based on Poisson processes in a stable manner.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126263922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Hiwa, Yuuki Kohri, Keisuke Hachisuka, T. Hiroyasu
{"title":"Region-of-interest extraction of fMRI data using genetic algorithms","authors":"S. Hiwa, Yuuki Kohri, Keisuke Hachisuka, T. Hiroyasu","doi":"10.1109/SSCI.2016.7850135","DOIUrl":"https://doi.org/10.1109/SSCI.2016.7850135","url":null,"abstract":"Functional connectivity, which is indicated by time-course correlations of brain activities among different brain regions, is one of the most useful metrics to represent human brain states. In functional connectivity analysis (FCA), the whole brain is parcellated into a certain number of regions based on anatomical atlases, and the mean time series of brain activities are calculated. Then, the correlation between mean signals of two regions is repeatedly calculated for all combinations of regions, and finally, we obtain the correlation matrix of the whole brain. FCA allows us to understand which regions activate cooperatively during specific stimulus or tasks. In this study, we attempt to represent human brain states using functional connectivity as feature vectors. As there are a number of brain regions, it is difficult to determine which regions are prominent to represent the brain state. Therefore, we proposed an automatic region-of-interest (ROI) extraction method to classify human brain states. Time-series brain activities were measured by functional magnetic resonance imaging (fMRI), and FCA was performed. Each element of the correlation matrix was used as a feature vector for brain state classification, and element characteristics were learned using supervised learning methods. The elements used as feature vectors, i.e., ROIs, were determined automatically using a genetic algorithm to maximize the classification accuracy of brain states. fMRI data measured during two emotional conditions, i.e., pleasant and unpleasant emotions, were used to show the effectiveness of the proposed method. Numerical experiments revealed that the proposed method could extract the superior frontal gyrus, orbitofrontal cortex, cuneus, cerebellum, and cerebellar vermis as ROIs associated with pleasant and unpleasant emotions.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125709756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advanced parallel copula based EDA","authors":"Martin Hyrs, J. Schwarz","doi":"10.1109/SSCI.2016.7850202","DOIUrl":"https://doi.org/10.1109/SSCI.2016.7850202","url":null,"abstract":"Estimation of distribution algorithms (EDAs) are stochastic optimization techniques that are based on building and sampling a probability model. Copula theory provides methods that simplify the estimation of the probability model. To improve the efficiency of current copula based EDAs (CEDAs) new modifications of parallel CEDA were proposed. We investigated eight variants of island-based algorithms utilizing the capability of promising copula families, inter-island migration and additional adaptation of marginal parameters using CT-AVS technique. The proposed algorithms were tested on two sets of well-known standard optimization benchmarks in the continuous domain. The results of the experiments validate the efficiency of our algorithms.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121684528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}