SIMARD:一种具有质量预选策略的基于模拟退火的RNA设计算法

Sinem Sav, David J. D. Hampson, Herbert H. Tsang
{"title":"SIMARD:一种具有质量预选策略的基于模拟退火的RNA设计算法","authors":"Sinem Sav, David J. D. Hampson, Herbert H. Tsang","doi":"10.1109/SSCI.2016.7849957","DOIUrl":null,"url":null,"abstract":"Most of the biological processes including expression levels of genes and translation of DNA to produce proteins within cells depend on RNA sequences, and the structure of the RNA plays vital role for its function. RNA design problem refers to the design of an RNA sequence that folds into given secondary structure. However, vast number of possible nucleotide combinations make this an NP-Hard problem. To solve the RNA design problem, a number of researchers have tried to implement algorithms using local stochastic search, context-free grammars, global sampling or evolutionary programming approaches. In this paper, we examine SIMARD, an RNA design algorithm that implements simulated annealing techniques. We also propose QPS, a mutation operator for SIMARD that pre-selects high quality sequences. Furthermore, we present experiment results of SIMARD compared to eight other RNA design algorithms using the Rfam datset. The experiment results indicate that SIMARD shows promising results in terms of Hamming distance between designed sequence and the target structure, and outperforms ERD in terms of free energy.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"SIMARD: A simulated annealing based RNA design algorithm with quality pre-selection strategies\",\"authors\":\"Sinem Sav, David J. D. Hampson, Herbert H. Tsang\",\"doi\":\"10.1109/SSCI.2016.7849957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the biological processes including expression levels of genes and translation of DNA to produce proteins within cells depend on RNA sequences, and the structure of the RNA plays vital role for its function. RNA design problem refers to the design of an RNA sequence that folds into given secondary structure. However, vast number of possible nucleotide combinations make this an NP-Hard problem. To solve the RNA design problem, a number of researchers have tried to implement algorithms using local stochastic search, context-free grammars, global sampling or evolutionary programming approaches. In this paper, we examine SIMARD, an RNA design algorithm that implements simulated annealing techniques. We also propose QPS, a mutation operator for SIMARD that pre-selects high quality sequences. Furthermore, we present experiment results of SIMARD compared to eight other RNA design algorithms using the Rfam datset. The experiment results indicate that SIMARD shows promising results in terms of Hamming distance between designed sequence and the target structure, and outperforms ERD in terms of free energy.\",\"PeriodicalId\":120288,\"journal\":{\"name\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2016.7849957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7849957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

细胞内基因的表达水平和DNA的翻译产生蛋白质等大多数生物过程都依赖于RNA序列,而RNA的结构对其功能起着至关重要的作用。RNA设计问题是指RNA序列折叠成给定二级结构的设计问题。然而,大量可能的核苷酸组合使其成为NP-Hard问题。为了解决RNA设计问题,许多研究人员尝试使用局部随机搜索、上下文无关语法、全局采样或进化规划方法来实现算法。在本文中,我们研究了SIMARD,一种实现模拟退火技术的RNA设计算法。我们还提出了QPS,一个SIMARD的突变算子,它可以预先选择高质量的序列。此外,我们还介绍了SIMARD与其他八种使用Rfam数据集的RNA设计算法的实验结果。实验结果表明,SIMARD在设计序列与目标结构之间的汉明距离方面取得了令人满意的结果,在自由能方面优于ERD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SIMARD: A simulated annealing based RNA design algorithm with quality pre-selection strategies
Most of the biological processes including expression levels of genes and translation of DNA to produce proteins within cells depend on RNA sequences, and the structure of the RNA plays vital role for its function. RNA design problem refers to the design of an RNA sequence that folds into given secondary structure. However, vast number of possible nucleotide combinations make this an NP-Hard problem. To solve the RNA design problem, a number of researchers have tried to implement algorithms using local stochastic search, context-free grammars, global sampling or evolutionary programming approaches. In this paper, we examine SIMARD, an RNA design algorithm that implements simulated annealing techniques. We also propose QPS, a mutation operator for SIMARD that pre-selects high quality sequences. Furthermore, we present experiment results of SIMARD compared to eight other RNA design algorithms using the Rfam datset. The experiment results indicate that SIMARD shows promising results in terms of Hamming distance between designed sequence and the target structure, and outperforms ERD in terms of free energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信