基于模糊c均值聚类的web日志会话识别新方法

D. Koutsoukos, Georgios Alexandridis, Georgios Siolas, A. Stafylopatis
{"title":"基于模糊c均值聚类的web日志会话识别新方法","authors":"D. Koutsoukos, Georgios Alexandridis, Georgios Siolas, A. Stafylopatis","doi":"10.1109/SSCI.2016.7849939","DOIUrl":null,"url":null,"abstract":"In this paper a new algorithm for session identification in web logs is outlined, based on the fuzzy c-means clustering of the available data. The novelty of the proposed methodology lies in the initialization of the partition matrix using subtractive clustering, the examination of the effect a variety of distance metrics have on the clustering process (in addition to the widely-used Euclidean distance), the determination of the number of user sessions based on candidate sessions and the representation of the session data. The experimental results show that the proposed methodology is effective in the reconstruction of user sessions and can distinguish individual sessions more accurately than baseline time-heuristic methods proposed in literature.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A new approach to session identification by applying fuzzy c-means clustering on web logs\",\"authors\":\"D. Koutsoukos, Georgios Alexandridis, Georgios Siolas, A. Stafylopatis\",\"doi\":\"10.1109/SSCI.2016.7849939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a new algorithm for session identification in web logs is outlined, based on the fuzzy c-means clustering of the available data. The novelty of the proposed methodology lies in the initialization of the partition matrix using subtractive clustering, the examination of the effect a variety of distance metrics have on the clustering process (in addition to the widely-used Euclidean distance), the determination of the number of user sessions based on candidate sessions and the representation of the session data. The experimental results show that the proposed methodology is effective in the reconstruction of user sessions and can distinguish individual sessions more accurately than baseline time-heuristic methods proposed in literature.\",\"PeriodicalId\":120288,\"journal\":{\"name\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2016.7849939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7849939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种基于可用数据的模糊c均值聚类的网络日志会话识别新算法。提出的方法的新颖之处在于使用减法聚类初始化分区矩阵,检查各种距离度量对聚类过程的影响(除了广泛使用的欧几里得距离),基于候选会话确定用户会话数量以及会话数据的表示。实验结果表明,所提出的方法在用户会话重建中是有效的,并且比文献中提出的基线时间启发式方法更准确地区分单个会话。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach to session identification by applying fuzzy c-means clustering on web logs
In this paper a new algorithm for session identification in web logs is outlined, based on the fuzzy c-means clustering of the available data. The novelty of the proposed methodology lies in the initialization of the partition matrix using subtractive clustering, the examination of the effect a variety of distance metrics have on the clustering process (in addition to the widely-used Euclidean distance), the determination of the number of user sessions based on candidate sessions and the representation of the session data. The experimental results show that the proposed methodology is effective in the reconstruction of user sessions and can distinguish individual sessions more accurately than baseline time-heuristic methods proposed in literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信