2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America)最新文献

筛选
英文 中文
Ransomware Detection Using Deep Learning in the SCADA System of Electric Vehicle Charging Station 基于深度学习的电动汽车充电站SCADA系统中的勒索软件检测
2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America) Pub Date : 2021-04-15 DOI: 10.1109/ISGTLatinAmerica52371.2021.9543031
M. Basnet, Subash Poudyal, M. Ali, D. Dasgupta
{"title":"Ransomware Detection Using Deep Learning in the SCADA System of Electric Vehicle Charging Station","authors":"M. Basnet, Subash Poudyal, M. Ali, D. Dasgupta","doi":"10.1109/ISGTLatinAmerica52371.2021.9543031","DOIUrl":"https://doi.org/10.1109/ISGTLatinAmerica52371.2021.9543031","url":null,"abstract":"The Supervisory control and data acquisition (SCADA) systems have been continuously leveraging the evolution of network architecture, communication protocols, next-generation communication techniques (5G, 6G, Wi-Fi 6), and the internet of things (IoT). However, SCADA system has become the most profitable and alluring target for ransomware attackers. This paper proposes the deep learning-based novel ransomware detection framework in the SCADA controlled electric vehicle charging station (EVCS) with the performance analysis of three deep learning algorithms, namely deep neural network (DNN), 1D convolution neural network (CNN), and long short-term memory (LSTM) recurrent neural network. All three-deep learning-based simulated frameworks achieve around 97% average accuracy (ACC), more than 98% of the average area under the curve (AUC) and an average F1-score under 10-fold stratified cross-validation with an average false alarm rate (FAR) less than 1.88%. Ransomware driven distributed denial of service (DDoS) attack tends to shift the state of charge (SOC) profile by exceeding the SOC control thresholds. Also, ransomware driven false data injection (FDI) attack has the potential to damage the entire BES or physical system by manipulating the SOC control thresholds. It's a design choice and optimization issue that a deep learning algorithm can deploy based on the tradeoffs between performance metrics.","PeriodicalId":120262,"journal":{"name":"2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127164376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Joint Matrix Completion and Compressed Sensing for State Estimation in Low-observable Distribution System 低可观测配电系统状态估计的联合矩阵补全与压缩感知
2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America) Pub Date : 2021-04-13 DOI: 10.1109/ISGTLatinAmerica52371.2021.9543006
Shweta Dahale, B. Natarajan
{"title":"Joint Matrix Completion and Compressed Sensing for State Estimation in Low-observable Distribution System","authors":"Shweta Dahale, B. Natarajan","doi":"10.1109/ISGTLatinAmerica52371.2021.9543006","DOIUrl":"https://doi.org/10.1109/ISGTLatinAmerica52371.2021.9543006","url":null,"abstract":"Limited measurement availability at the distribution grid presents challenges for state estimation and situational awareness. This paper combines the advantages of two sparsity-based state estimation approaches (matrix completion and compressive sensing) that have been proposed recently to address the challenge of unobservability. The proposed approach exploits both the low rank structure and a suitable transform domain representation to leverage the correlation structure of the spatio-temporal data matrix while incorporating the powerflow constraints of the distribution grid. Simulations are carried out on three phase unbalanced IEEE 37 test system to verify the effectiveness of the proposed approach. The performance results reveal - (1) the superiority over traditional matrix completion and (2) very low state estimation errors for high compression ratios representing very low observability.","PeriodicalId":120262,"journal":{"name":"2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123668179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信