低可观测配电系统状态估计的联合矩阵补全与压缩感知

Shweta Dahale, B. Natarajan
{"title":"低可观测配电系统状态估计的联合矩阵补全与压缩感知","authors":"Shweta Dahale, B. Natarajan","doi":"10.1109/ISGTLatinAmerica52371.2021.9543006","DOIUrl":null,"url":null,"abstract":"Limited measurement availability at the distribution grid presents challenges for state estimation and situational awareness. This paper combines the advantages of two sparsity-based state estimation approaches (matrix completion and compressive sensing) that have been proposed recently to address the challenge of unobservability. The proposed approach exploits both the low rank structure and a suitable transform domain representation to leverage the correlation structure of the spatio-temporal data matrix while incorporating the powerflow constraints of the distribution grid. Simulations are carried out on three phase unbalanced IEEE 37 test system to verify the effectiveness of the proposed approach. The performance results reveal - (1) the superiority over traditional matrix completion and (2) very low state estimation errors for high compression ratios representing very low observability.","PeriodicalId":120262,"journal":{"name":"2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Joint Matrix Completion and Compressed Sensing for State Estimation in Low-observable Distribution System\",\"authors\":\"Shweta Dahale, B. Natarajan\",\"doi\":\"10.1109/ISGTLatinAmerica52371.2021.9543006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Limited measurement availability at the distribution grid presents challenges for state estimation and situational awareness. This paper combines the advantages of two sparsity-based state estimation approaches (matrix completion and compressive sensing) that have been proposed recently to address the challenge of unobservability. The proposed approach exploits both the low rank structure and a suitable transform domain representation to leverage the correlation structure of the spatio-temporal data matrix while incorporating the powerflow constraints of the distribution grid. Simulations are carried out on three phase unbalanced IEEE 37 test system to verify the effectiveness of the proposed approach. The performance results reveal - (1) the superiority over traditional matrix completion and (2) very low state estimation errors for high compression ratios representing very low observability.\",\"PeriodicalId\":120262,\"journal\":{\"name\":\"2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTLatinAmerica52371.2021.9543006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTLatinAmerica52371.2021.9543006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

配电网有限的测量可用性对状态估计和态势感知提出了挑战。本文结合了最近提出的两种基于稀疏性的状态估计方法(矩阵补全和压缩感知)的优点,以解决不可观察性的挑战。该方法在考虑配电网潮流约束的同时,利用低秩结构和合适的变换域表示来利用时空数据矩阵的关联结构。在三相不平衡ieee37测试系统上进行了仿真,验证了该方法的有效性。性能结果显示:(1)优于传统的矩阵补全;(2)对于具有极低可观测性的高压缩比,状态估计误差非常低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Matrix Completion and Compressed Sensing for State Estimation in Low-observable Distribution System
Limited measurement availability at the distribution grid presents challenges for state estimation and situational awareness. This paper combines the advantages of two sparsity-based state estimation approaches (matrix completion and compressive sensing) that have been proposed recently to address the challenge of unobservability. The proposed approach exploits both the low rank structure and a suitable transform domain representation to leverage the correlation structure of the spatio-temporal data matrix while incorporating the powerflow constraints of the distribution grid. Simulations are carried out on three phase unbalanced IEEE 37 test system to verify the effectiveness of the proposed approach. The performance results reveal - (1) the superiority over traditional matrix completion and (2) very low state estimation errors for high compression ratios representing very low observability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信