{"title":"Water–triglyceride interfaces limit permeability and diffusion of aroma molecules in butter","authors":"Tobias Benedikt Koch, Heiko Briesen","doi":"10.1002/ejlt.202300248","DOIUrl":"https://doi.org/10.1002/ejlt.202300248","url":null,"abstract":"Insight into the dynamics of aroma molecules in bulk phases and at water–triglyceride interfaces is crucial for elucidating the aroma release mechanisms in complex dairy products such as butter. This study employs classical, all‐atom molecular dynamics simulations with umbrella sampling to investigate the energetics and kinetics of key aroma‐active compounds, including diacetyl, ‐decalactone, and butyric acid, at interfaces of 1,3‐dipalmitoyl‐2‐oleoylglycerol (POP) in water. The chemical properties of aroma compounds, including polarity, hydrogen bonding, and van der Waals interactions, play a pivotal role in their interaction with interfacial molecules, resulting in unique profiles of the potential of mean force and diffusivity. In particular, ‐decalactone preferentially resides at the interface and accumulates in the triglyceride phase. Aroma permeability through the complexly organized water–triglyceride interface significantly decreases from ‐decalactone to butyric acid, with a less pronounced reduction for diacetyl. Surprisingly, this trend in aroma permeability at interfaces does not coincide with trends in aroma diffusion within both pure bulk phases. This discrepancy is attributed to local, heterogeneous molecular structuring at water–triglyceride interfaces, impeding the interfacial permeation processes and leading to local aroma confinement.<jats:italic>Practical Application</jats:italic>: Employing a water–POP interface as a case study, the methodology investigates aroma compound diffusion within bulk phases, delineating limitations in aroma permeability in dairy products with extended water–triglyceride interfaces. This is a substep in the aroma release process, contributing to the interpretation of perception studies by sensory panels in human sensory experiments and fostering a deeper understanding of the intricate dynamics inherent to individual compounds.","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed A. Akl, Sherif Ryad, Mohamed F. Ibrahime, Alaa A. Kassem
{"title":"Ultraflexible liposomes for transdermal delivery of atorvastatin calcium: Rheological and ex vivo evaluation","authors":"Mohamed A. Akl, Sherif Ryad, Mohamed F. Ibrahime, Alaa A. Kassem","doi":"10.1002/ejlt.202400048","DOIUrl":"10.1002/ejlt.202400048","url":null,"abstract":"<p>Our research aims to explore the possibility of incorporating atorvastatin calcium (ATC) in ultraflexible nanovesicles (UFNVs) to avoid the hepatic first metabolism and enhance its effectiveness as a potential alternative to oral treatment. ATC nanovesicles were developed utilizing the rotary evaporation-sonication method and assessed in vitro concerning their vesicle diameter, zeta potential (ZP), entrapment efficiency (EE), as well as in vitro release studies. The chosen formulation of ATC-UFNVs was integrated into a different gel base that was evaluated for content uniformity, pH, spreading ability, viscosity, and rheological behavior. The skin permeation of the prepared nanovesicles was assessed using an ex vivo permeation and confocal laser microscopy images (CLSM). In vitro evaluation of the ATC-loaded UFNVs showed that the mean diameter of the nanovesicles ranging between 60.84 ± 0.53 nm and 91.68 ± 2.11 nm, the Zeta potential values ranged from of –15.8 ± 0.31 to –25.1 ± 0.81 mV, the EE% were between 84.33 ± 1.94 and 86.53 ± 2.02%, and the ATC release from the formulations was 75.25–90.89%. All release patterns were analyzed kinetically following Higuchi's diffusion approach. Carbapol 934 gel bases containing ATC-UF exhibited non-Newtonian pseudo-plastic flow with thixotropy equal to 2.013 cm<sup>2</sup>. Ex vivo data showed that ATC-UFNVs had better penetration compared to free AC. CLSM revealed that the UF-nanovesicle exhibited stronger and deeper fluorescence signals up to 90 µm depth of permeation in skin versus the rhodamine B-free solution (50 µm). The transdermal ability of the ATC-UFNVs gel formulation has been conclusively demonstrated by our research.</p><p><i>Practical Applications</i>: The successful development of atorvastatin calcium-loaded ultraflexible nanovesicles (ATC-UFNVs) in this study offers promising applications for researchers and healthcare professionals. The ability of these nanovesicles to bypass hepatic first-pass metabolism and enhance drug delivery to the skin presents a potential alternative to oral administration, which can be associated with gastrointestinal side effects and variable absorption. The findings of this research can be applied in the development of novel transdermal drug delivery systems for the treatment of various cardiovascular conditions. ATC-UFNVs may be incorporated into topical formulations for the management of hypercholesterolemia, reducing the need for systemic medication. Additionally, the insights gained from this study could be utilized to explore the feasibility of using nanovesicles for the delivery of other lipophilic drugs, expanding their potential therapeutic applications.</p>","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tianjiao Geng, Haitao Xue, Can Kong, Luping He, Shuping Wang, Ling Ding, Xiaoyan Zou, Zhichun Gu, Hongze Liao, Houwen Lin
{"title":"A preformulation study of marine alkaloid aaptamine: Physicochemical properties investigation and liposomal formulation development toward hepatocellular carcinoma treatment","authors":"Tianjiao Geng, Haitao Xue, Can Kong, Luping He, Shuping Wang, Ling Ding, Xiaoyan Zou, Zhichun Gu, Hongze Liao, Houwen Lin","doi":"10.1002/ejlt.202400102","DOIUrl":"10.1002/ejlt.202400102","url":null,"abstract":"<p>Hepatocellular carcinoma (HCC) is a global health concern with high prevalence and mortality. A marine alkaloid, AP-427, has been reported to show potential for HCC treatment. However, its use is limited by low solubility and high toxicity. We aimed to investigate the preformulation parameters and develop AP-427 liposomes to improve its clinical suitability. A stability-indicating HPLC assay was established, and the physicochemical properties of AP-427 were analyzed. Afterward, AP-427 liposomes were prepared and characterized, and their cytotoxicity was evaluated. AP-427 had a low solubility at physiological pH, a LogD of 2.56 ± 0.03, and a basic pKa of 3.24 ± 0.12. An entrapment efficiency of 52.71 ± 3.2% was achieved after optimization. The resulting AP-427 liposomes were 147.2 ± 3.4 nm and stable up to three months when stored in a pellet form at 4°C. The crystallization of AP-427 in liposomes became less ordered, and AP-427 liposomes exhibited a controlled release fitted in Korsmeyer–Peppas model, indicating the release was driven by diffusion. Furthermore, AP-427 liposomes showed a 3.6 times reduced cytotoxicity against HepG2 cells compared with free AP-427, potentially enhancing its antitumor efficacy. In conclusion, the precise preformulation parameters advanced the AP-427 liposomal formulation development, which showed potential for HCC treatment.</p><p><i>Practical Applications</i>: The aaptamine derivative AP-427 has shown cytotoxic effects against hepatocellular carcinoma. However, the low solubility and high toxicity limit its clinical application. The present study aims to prepare liposomal formulation to solve the current problems. Results obtained from this study shed light on challenges related to drug solubility and have paved the way for the development of an effective AP-427 liposomal formulation with promising application in hepatocellular carcinoma therapy.</p>","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rina Sakaguchi, Antara Ghosh, Sujan Banik, Yasuhiro Nishida, Masaki Honda
{"title":"Complex formation and stabilization of Z-isomer-enriched astaxanthin esters derived from Haematococcus lacustris with water-soluble carriers via spray drying","authors":"Rina Sakaguchi, Antara Ghosh, Sujan Banik, Yasuhiro Nishida, Masaki Honda","doi":"10.1002/ejlt.202400101","DOIUrl":"10.1002/ejlt.202400101","url":null,"abstract":"<p>To enhance the water solubility and bioavailability of astaxanthin esters, inclusion complexes of <i>Z</i>-isomer-enriched astaxanthin esters with water-soluble carriers were prepared using a spray drying technique. A food-grade <i>Haematococcus</i> alga extract was used as the source of astaxanthin esters, and the <i>Z</i>-isomerization was performed via direct heating of the extract. Polyvinylpyrrolidone (PVP) and hydroxypropyl-β-cyclodextrin (HP-β-CD) were used as water-soluble carriers. The effects of spray drying conditions on the encapsulation efficiency of astaxanthin esters in the carriers and the total <i>Z</i>-isomer ratio of encapsulated astaxanthin esters were investigated, and the physical properties and storage stability of the resulting composites were evaluated. Under optimum spray drying conditions, efficient production of highly water-soluble <i>Z</i>-isomer-rich astaxanthin esters was achieved in both carriers: >95% encapsulation efficiency and >55% total <i>Z</i>-isomer ratio. The physical properties, such as surface morphology and particle size distributions, of the resulting particles differed significantly between PVP and HP-β-CD. Storage tests demonstrated that the formulated <i>Z</i>-isomer-rich astaxanthin esters were highly stable. Our findings will contribute to the practical applications of <i>Z</i>-isomer-rich astaxanthin materials.</p><p><i>Practical Applications</i>: The formulation technology developed in this study has the potential to address the industrial challenges of using astaxanthin, that is, low water solubility and low bioavailability. Furthermore, the low storage stability of astaxanthin <i>Z</i>-isomers, which hinders their industrial use, can be solved simultaneously. The resulting <i>Z</i>-isomer-rich astaxanthin powders are expected to be used in a wide range of applications, including nutraceuticals, cosmetics, and animal feeds.</p>","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial Board: Eur. J. Lipid Sci. Technol. 9/2024","authors":"","doi":"10.1002/ejlt.202470060","DOIUrl":"https://doi.org/10.1002/ejlt.202470060","url":null,"abstract":"","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ejlt.202470060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Picture: Eur. J. Lipid Sci. Technol. 9/2024","authors":"","doi":"10.1002/ejlt.202470059","DOIUrl":"https://doi.org/10.1002/ejlt.202470059","url":null,"abstract":"<p>Simplified cholesterol backbone with images of a random spectral trace, a palm leaf (Rainer Sturm/pixelio.de), fluorescently stained lipid droplets (red) and associated proteins (green) in a T3T-L1 adipocyte (Johanna Spandl, University of Bonn, Germany), and fish (Vera/pixelio.de).\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ejlt.202470059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Contents: Eur. J. Lipid Sci. Technol. 9/2024","authors":"","doi":"10.1002/ejlt.202470061","DOIUrl":"https://doi.org/10.1002/ejlt.202470061","url":null,"abstract":"","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ejlt.202470061","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gözde Kutlu, Perihan Kubra Akman, Kübra Feyza Erol, Fatih Bozkurt, Fatih Tornuk
{"title":"Nanoencapsulation of wheat germ oil with chitosan-nettle seed gum-ovalbumin: Preparation, optimization, and characterization","authors":"Gözde Kutlu, Perihan Kubra Akman, Kübra Feyza Erol, Fatih Bozkurt, Fatih Tornuk","doi":"10.1002/ejlt.202300152","DOIUrl":"10.1002/ejlt.202300152","url":null,"abstract":"<p>This study was aimed to optimize nanoencapsulation conditions of ovalbumin (OV)-nettle seed gum (NSG)-chitosan (CS), ONC-based nanocarriers, using response surface methodology (RSM). Then, wheat germ oil (WGO) was encapsulated in optimized ONC nanocarriers, and WGO-loaded nanocarriers were characterized for their encapsulation efficiency, zeta potential, average particle size, emulsion stability, thermal, structural, micromorphological, rheological, and cytotoxic properties. The results showed that NSG-CS amount of 30 mL, OV amount of 20 mL, and pH of 3 gave the maximum zeta potential and minimum average particle size based on the predicted conditions for the production of ONC nanocarriers by RSM. Encapsulation efficiencies of WGO-loaded nanoparticles (WGONs) containing different ratios of WGO (2.5% to 4.5%, v:w) ranged from 48.66% to 71.91%. According to rheological properties, both the solutions of ONC complex and WGONs exhibited Newtonian flow behavior. The FT-IR spectra exhibited changes in the peaks associated with amino and carboxyl groups following the encapsulation of WGO, suggesting the successful completion of the encapsulation process. SEM images revealed that the addition of WGO into the capsule resulted in the formation of rough particles. The cytotoxicity tests demonstrated that concentrations of WGO, CS, NSG, OV, WGO, ONC, and WGON up to 10 mg mL<sup>–1</sup> did not significantly reduce the viability of L-929 human fibroblast cell lines, indicating their nontoxicity toward healthy cells. In conclusion, this study suggested the successful encapsulation of WGO within ONC carriers at the nanoscale, achieving high encapsulation efficiency and favorable properties to enhance their uses for different purposes.</p><p><i>Practical Application</i>: Wheat germ, an important by-product of wheat milling industry, contains considerable amounts of oil which possesses many beneficial components like tocopherol, vitamin B, phytosterols, and policosanols. These compounds have potential health benefits such as supporting exercise performance, cardiovascular health, and reducing the risk of overweight/obesity. Therefore, this underutilized oil needs to be introduced to the food/nutraceutical industry more extensively. However, the susceptibility of wheat germ oil (WGO) to oxidation and its short shelf-life limit its further use. Encapsulation technology can be employed to protect the WGO, extend its shelf-life, and improve its stability. Response surface methodology (RSM) is also a versatile way to determine the optimal conditions for encapsulation, resulting in the formation of stable nanocapsules containing WGO. The resulting nanocapsules effectively release the active ingredients of WGO, protecting them from oxidation and making them highly suitable for use as functional food ingredients or in pharmaceutical products with promising potential.</p>","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Jia, Hao Yue, Tongcheng Xu, Yong-Jiang Xu, Yuanfa Liu
{"title":"Lipidomics revealed the superior anti-obesity effect of brown adipose tissue in obese mice","authors":"Min Jia, Hao Yue, Tongcheng Xu, Yong-Jiang Xu, Yuanfa Liu","doi":"10.1002/ejlt.202400029","DOIUrl":"10.1002/ejlt.202400029","url":null,"abstract":"<p>Brown adipose tissue (BAT) has been reported to possess the potential to ameliorate diet-induced obesity. However, the molecular mechanism of BAT activation in alleviating obese states remains unclear. This study investigated the physiology and BAT index of high-fat diet-induced and normal chow mice after 3 weeks of mild cold treatment. Body weights and lipid accumulations in BAT and white adipose tissue were significantly decreased by cold treatment. Lipidomics analysis showed that chronic cold treatment caused the remodeling of major lipid classes in BAT, especially species and phospholipid content, plus the mitochondrial morphology. Evidence indicated mitochondrial biogenesis and thermogenesis, and all the effects caused by BAT activation were more pronounced in obese mice. Taken together, our study revealed that phospholipid metabolism is the fundamental requirement in the anti-obesity effect of BAT.</p><p><i>Practical Applications</i>: Chronic mild cold treatment induced a significant alteration of lipid species and content in BAT and improvement in overall lipid metabolism. Apart from biogenesis and thermogenesis, the categories and morphology of mitochondria were also significantly altered. Though obese mice have inactivated BAT with impaired mitochondria, the superior effect caused by BAT activation on obese mice than control mice indicated the great potential to be evoked. This article may provide lifestyle guidelines for the population with overweight and obesity, especially in teenagers and children.</p>","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rhaira Fernanda Ayoub Casalvara, Everton da Silva Santos, Jose Vinicius Mattos, Tatiana Colombo Pimentel, Ricardo Calhelha, Tânia C. S. P. Pires, Daniele B. Rodrigues, Carla Pereira, Rúbia Carvalho Gomes Corrêa, Lucio Cardozo-Filho, José Eduardo Gonçalves
{"title":"Chemical profile and bioactivities of industrial wastes from Chenopodium quinoa seed","authors":"Rhaira Fernanda Ayoub Casalvara, Everton da Silva Santos, Jose Vinicius Mattos, Tatiana Colombo Pimentel, Ricardo Calhelha, Tânia C. S. P. Pires, Daniele B. Rodrigues, Carla Pereira, Rúbia Carvalho Gomes Corrêa, Lucio Cardozo-Filho, José Eduardo Gonçalves","doi":"10.1002/ejlt.202400021","DOIUrl":"10.1002/ejlt.202400021","url":null,"abstract":"<p>This study aimed to investigate the effect of extraction methods and solvents (Soxhlet and supercritical fluid extraction, SFE) on the chemical profile (gas chromatography [GC]/mass spectrometry and GC/flame ionization detection) and antimicrobial, antioxidant, antitumor, and anti-inflammatory activities of quinoa Piabiru (QP) husk crude extracts. Soxhlet was applied using 100% water (QPSH2O), and ethanolic solutions of 50% ethanol (ethanol:water 50:50 v/v, QPSetOH50), 70% ethanol (QPSetOH70), and 99% ethanol (QPSetOH99) as solvents. SFE was applied using CO<sub>2</sub> and <i>n</i>-propane as solvents (QPSF). QPSH2O extract showed a higher concentration of phytosterols (stigmasterol, β-sitosterol, 7,8-epoxylanostan-11-<span>ol</span>,3-acetoxy) and carotenoids (rhodopin) and oleic acid, displaying intermediate thiobarbituric acid reactive substance (TBARS) antioxidant activity. Intermediate concentrations of ethanol (QPSetOH50 and QPSetOH70 extracts) increased the extraction yields and the antibacterial activity of the extracts (<i>Pseudomonas aeruginosa</i>, <i>Salmonella enterica</i>, <i>Bacillus cereus</i>, and <i>Staphylococcus aureus</i>). Higher concentrations of ethanol (QPSetOH99 extract) contributed to increased antioxidant activity as assessed by TBARS and higher recoveries of 4-(allyloxy)-2-methyl-2-pentanol, nonadecane, and lauric, myristic, palmitic, linoleic, stearic, arachidic, behenic, and lignoceric acids. Finally, the QPSF extract presented higher antioxidant activity by DPPH, ABTS, and ferric-reducing antioxidant power, higher content of 5-methoxy-2-pentanone, 5-methoxy-2-methyl-2-pentanol, 1-(1,3-dimethylbutoxy)-2-propanol, oxalic, undecanoic, myristoleic, tricosanoic, pentadecanoic, elaidic, 11-eicosenoic, and erucic acids, and better antifungal activity against <i>Aspergillus brasiliensis</i> than the other extracts. Crude extracts were not cytotoxic against non-tumor cells (Vero) and did not show antitumor or anti-inflammatory activities. Thus, antagonistic or synergistic effects of the phytochemical profile of quinoa husk crude extracts may present potential food and pharmaceutical applications.</p><p><i>Practical Applications</i>: The exceptional nutritional properties of quinoa seeds have boosted their cultivation in more than 123 countries. However, quinoa husks are generally considered waste. This study, which is of utmost importance, demonstrates the potential of extracting bioactive compounds from quinoa husks via pressurized fluids, turning them into a health-promoting co-product. This approach could minimize the current shortage of new antibiotics, antifungals, antitumor agents, and anti-inflammatory substances in the pharmaceutical and food sectors. By converting quinoa husks into valuable bioactive extracts, we contribute significantly to developing effective natural compounds, underlining the significance of our collective work.</p>","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142191972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}