European Journal of Mechanics B-fluids最新文献

筛选
英文 中文
A Study on the interaction of shock tube-generated blast waves with a circular object at different pressure ratios 关于冲击管产生的爆炸波在不同压力比下与圆形物体相互作用的研究
IF 2.5 3区 工程技术
European Journal of Mechanics B-fluids Pub Date : 2024-10-07 DOI: 10.1016/j.euromechflu.2024.10.001
{"title":"A Study on the interaction of shock tube-generated blast waves with a circular object at different pressure ratios","authors":"","doi":"10.1016/j.euromechflu.2024.10.001","DOIUrl":"10.1016/j.euromechflu.2024.10.001","url":null,"abstract":"<div><div>The interaction of high peak overpressure blast waves with a circular object placed at two different axial locations from the shock tube exit is studied through numerical simulation using an in-house developed multi-component Navier–Stokes solver. The driver and driven sections of the shock tube were 0.8 m and 6 m, respectively. Helium is used in the driver section, while atmospheric air is used in the driven section and outside the shock tube. The evolution of blast waves inside an open-ended shock tube and its interaction with a rectangular object is reported in Murugan et al.. (2022). Here, the blast wave interacting with a circular object is examined for diaphragm pressure ratios of 13 and 57 by placing the objects at 250 mm and 500 mm from the shock tube exit. The flow field is evaluated through numerical Schlieren, vorticity, density, pressure plots, and the enstrophy plot, which shows the vortical structures that originated in the flow field. The blast load acting on the circular object is calculated for two diaphragm pressure ratios and axial locations. This study helps understand the reflection and diffraction of blast waves and associated flow fields around circular objects used in blast wave attenuation.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adjusting Manning coefficients to simulate tsunami propagation over porous coral reef 调整曼宁系数以模拟海啸在多孔珊瑚礁上的传播
IF 2.5 3区 工程技术
European Journal of Mechanics B-fluids Pub Date : 2024-10-02 DOI: 10.1016/j.euromechflu.2024.09.006
{"title":"Adjusting Manning coefficients to simulate tsunami propagation over porous coral reef","authors":"","doi":"10.1016/j.euromechflu.2024.09.006","DOIUrl":"10.1016/j.euromechflu.2024.09.006","url":null,"abstract":"<div><div>This study investigates the effect of porous coral reef on the tsunami propagation in terms of experimental and numerical modelling. It aims at quantifying the influence of several input parameters on the wave attenuation and at adjusting Manning coefficients to reproduce experimental results. The density and the surface of individual reefs are fixed as well as the width and length of the coral barrier. Results show that the reef height is the most sensitive parameter. This latter affects the tsunami propagation with an attenuation of the first wave reaching 15 % compared to the case with a smooth reef. Wave breaking occurs on the reef flat for each test but, as expected, its location depends greatly on the reservoir depths difference. Numerical simulations show that the Manning coefficient must be adjusted both by considering the coral reef height and the spatial grid resolution. It varies from 0.01 (for lowest reef with highest grid resolution) to 0.058 (for higher reefs with coarsest grid resolution).</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parametric study of traveling wave motion in energy absorption mode 能量吸收模式下的行波运动参数研究
IF 2.5 3区 工程技术
European Journal of Mechanics B-fluids Pub Date : 2024-09-26 DOI: 10.1016/j.euromechflu.2024.09.005
{"title":"Parametric study of traveling wave motion in energy absorption mode","authors":"","doi":"10.1016/j.euromechflu.2024.09.005","DOIUrl":"10.1016/j.euromechflu.2024.09.005","url":null,"abstract":"<div><div>There are two modes of traveling wave motion, traveling wave propulsion and traveling wave energy absorption. In this paper, a two-dimensional flexible traveling wave plate is taken as the research object. The characteristic length and characteristic parameter of traveling wave motion are determined by numerical simulation, and the parametric study of the traveling wave motion in energy absorption mode is conducted. The effects of dimensionless amplitude and dimensionless wave velocity on the energy absorption characteristics of flexible traveling wave plate are analyzed, and the mechanism of traveling wave energy absorption is revealed. The results show that the larger the dimensionless amplitude is, the stronger the work capacity of the traveling wave plate becomes, while the absolute amplitude or absolute wavelength has little effect on the work capacity of the traveling wave plate. Under different waveforms, the work capacity of the traveling wave plate increases first and then decreases as the dimensionless wave velocity increases. Within the parameter range studied in this article, when the dimensionless amplitude is 0.2 and the dimensionless wave velocity is 0.5, the traveling wave plate can achieve an energy absorption efficiency of about 40 %.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymmetric vertical transport in weakly forced shallow flows 弱强迫浅层流中的非对称垂直输运
IF 2.5 3区 工程技术
European Journal of Mechanics B-fluids Pub Date : 2024-09-24 DOI: 10.1016/j.euromechflu.2024.09.004
{"title":"Asymmetric vertical transport in weakly forced shallow flows","authors":"","doi":"10.1016/j.euromechflu.2024.09.004","DOIUrl":"10.1016/j.euromechflu.2024.09.004","url":null,"abstract":"<div><div>In this paper, we report on an investigation of the vertical transport of tracer particles released within a shallow, continuously-forced flow by means of numerical simulations. The investigation is motivated by the shallow flows encountered in many environmental situations and inspired by the laboratory experiments conducted in electromagnetically forced shallow fluid layers. The flow is confined to a thin fluid layer by stress-free top and no-slip bottom walls. The dynamics and the transport properties of the shallow flow are investigated under various flow conditions characterized by a Reynolds number related to the forcing, <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>F</mi></mrow></msub></mrow></math></span>, and the aspect ratio of vertical and horizontal length scales <span><math><mi>δ</mi></math></span>. The forcing generates an array of vortices that becomes unsteady when <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>F</mi></mrow></msub><msup><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≳</mo><mn>10</mn></mrow></math></span>. These vortices are accompanied by upwellings in their cores which are surrounded by narrower, stronger downwellings. Hence, upwellings occur where the horizontal flow is vorticity-dominated, while downwellings where it is strain-dominated. The magnitude of the asymmetry in strength and size of the vertical flows and their correlation with horizontal structures depends on the flow conditions and significantly influences the vertical spreading of particles within the fluid volume. Under conditions leading to a large asymmetry, particles within updrafts are transported slowly upwards, while particles within downdrafts rapidly move downwards. In addition, particles are trapped for longer within the updrafts than downdrafts because of their correlation with vorticity-dominated regions. However, when the flow becomes fully three-dimensional and highly unsteady for large <span><math><mrow><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>F</mi></mrow></msub><msup><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> values, this transport asymmetry subsides because the updrafts and downdrafts exhibit similar strength and size in such flow conditions. Consequently, similar amounts of particles are transported upwards and downwards at similar rates.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of radiation on the stability of MHD micropolar fluid in a vertical channel 辐射对垂直通道中 MHD 微极性流体稳定性的影响
IF 2.5 3区 工程技术
European Journal of Mechanics B-fluids Pub Date : 2024-09-18 DOI: 10.1016/j.euromechflu.2024.09.003
{"title":"Influence of radiation on the stability of MHD micropolar fluid in a vertical channel","authors":"","doi":"10.1016/j.euromechflu.2024.09.003","DOIUrl":"10.1016/j.euromechflu.2024.09.003","url":null,"abstract":"<div><p>The objective of the present article is to explore the stability of micropolar fluid flow in a vertical channel in the presence of thermal radiation and a transverse magnetic field. The generalized eigenvalue problem is numerically solved by utilizing the Chebyshev spectral collocation method, which is obtained from the perturbed state using the normal mode technique. The numerical data were compared with previously published results for particular cases. The critical modified Grashof number (<span><math><mrow><mi>G</mi><msubsup><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>′</mo></mrow></msubsup></mrow></math></span>) and the associated wave numbers (<span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>) are calculated and displayed graphically for different values of the parameters. It is noticed that the boundaries of instability may be increased or decreased with the flow governing parameters because of the presence of a magnetic field and thermal radiation.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Settling velocity of weakly inertial particles in vertical flow 垂直流中弱惯性粒子的沉降速度
IF 2.5 3区 工程技术
European Journal of Mechanics B-fluids Pub Date : 2024-09-12 DOI: 10.1016/j.euromechflu.2024.09.001
{"title":"Settling velocity of weakly inertial particles in vertical flow","authors":"","doi":"10.1016/j.euromechflu.2024.09.001","DOIUrl":"10.1016/j.euromechflu.2024.09.001","url":null,"abstract":"<div><div>We investigate the settling velocity change of weakly inertial particles, whose density ratio to fluid ranges from 1.35 to 1.38, in vertical water flow. To assess the effect of turbulence, we experimentally examine the dependence of modifications of velocity on physical scales, including time, velocity, and length, between particles and turbulence. It is observed that the settling velocity is either enhanced or hindered by the turbulence compared to stagnant conditions. The change in settling velocity is observed to be responsive to both the inertia of particles and the turbulence intensity. In cases of weak turbulence or with larger particles, the settling velocity exhibits small changes and even decreases. Conversely, the change in settling velocity is more pronounced for smaller particles and in more intense turbulence, reaching a maximum increase at <span><math><mrow><mi>S</mi><mi>t</mi><mo>≈</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>. We compare our experimental results with existing studies conducted in solid–liquid two-phase flow, finding a consistent tendency. In both prior research and the present study, the length scale parameter, <span><math><mrow><mi>S</mi><mi>t</mi><mi>S</mi><mi>v</mi></mrow></math></span>, has consistently been important in discerning inertial conditions that determine the change in settling velocity under turbulent conditions.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The broad study of blade cascade under controlled torsional flutter: Dynamics of the flow and stability analysis 受控扭转扑动下叶片级联的广泛研究:流动动力学和稳定性分析
IF 2.5 3区 工程技术
European Journal of Mechanics B-fluids Pub Date : 2024-09-06 DOI: 10.1016/j.euromechflu.2024.08.006
{"title":"The broad study of blade cascade under controlled torsional flutter: Dynamics of the flow and stability analysis","authors":"","doi":"10.1016/j.euromechflu.2024.08.006","DOIUrl":"10.1016/j.euromechflu.2024.08.006","url":null,"abstract":"<div><p>The experimental and numerical investigation of the flow instabilities acting on rigid blades and vice versa was conducted for both compressor and turbine configuration. The blade cascade consisted of five rectangular NACA 0010 blades, with three middle blades capable of performing harmonic motion with one degree of freedom (pitching) using force excitation. The base case (all blades fixed) and excited regime were examined. The influence of various angles of attack, harmonic frequency values, amplitude values, inter-blade phase angles and Reynolds numbers (Re) were tested. The mean flow properties as well as the fluid - structure interaction (FSI) were studied using Particle Image Velocimetry (PIV), Reynolds-averaged Navier-Stokes (RANS) CFD methods and using force measurement. Additionally, two different approaches, namely traveling wave mode (TWM) and aerodynamic influence coefficient (AIC), were adopted to estimate the aeroelastic stability of the blade cascade, and the results were compared. The results show significant aeroelastic coupling between the blades in both compressor and turbine configuration. However, the aerodynamic coupling effect for torsional flutter is more prominent in turbine configuration.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing nonlinear flow dynamics in hydrodynamic and magnetohydrodynamic regimes through modal decomposition 通过模态分解表征流体动力学和磁流体动力学状态下的非线性流动动力学
IF 2.5 3区 工程技术
European Journal of Mechanics B-fluids Pub Date : 2024-09-04 DOI: 10.1016/j.euromechflu.2024.08.008
{"title":"Characterizing nonlinear flow dynamics in hydrodynamic and magnetohydrodynamic regimes through modal decomposition","authors":"","doi":"10.1016/j.euromechflu.2024.08.008","DOIUrl":"10.1016/j.euromechflu.2024.08.008","url":null,"abstract":"<div><p>The study delves into the dynamic behavior of fluid flows in hydrodynamic (HD) and magnetohydrodynamic (MHD) regimes, specifically focusing on the influence of varying magnetic field strengths on vortex shedding around a cylinder. Employing advanced modal decomposition techniques such as Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD), the research unveils the intricate characteristics of these flow fields. In HD scenarios, the flow exhibits complex, periodic patterns with notable vortex shedding, whereas in MHD scenarios, the introduction of magnetic fields gradually transforms the flow into a more stable and streamlined state. The study significantly demonstrates the damping effect of magnetic fields on vortex intensity and oscillations, leading to a uniform flow at higher field strengths. This study leverages DMD to predict future flow dynamics in both HD and MHD regimes around a cylinder. By using snapshots from CFD simulations at Re <span><math><mo>=</mo></math></span> 120, we validate DMD’s predictive capabilities by comparing predicted snapshots with CFD results at corresponding time instants. This approach not only demonstrates DMD’s robustness in capturing complex flow behaviors but also highlights its potential for real-time monitoring and control in industrial applications. The findings provide new insights into the temporal dynamics of MHD flows and open avenues for optimizing flow control strategies in engineering systems.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624001225/pdfft?md5=e0a5d2ec8c67cdd997d5b0229c813672&pid=1-s2.0-S0997754624001225-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of viscous dissipation, throughflow and rotation on the thermal convective instability of Jeffrey fluid in a porous medium layer 粘性耗散、贯通流和旋转对多孔介质层中杰弗里流体热对流不稳定性的影响
IF 2.5 3区 工程技术
European Journal of Mechanics B-fluids Pub Date : 2024-09-04 DOI: 10.1016/j.euromechflu.2024.09.002
{"title":"Impact of viscous dissipation, throughflow and rotation on the thermal convective instability of Jeffrey fluid in a porous medium layer","authors":"","doi":"10.1016/j.euromechflu.2024.09.002","DOIUrl":"10.1016/j.euromechflu.2024.09.002","url":null,"abstract":"<div><p>In this analysis, the collective effects of rotation, viscous dissipation and vertical throughflow on the onset of convective movement in Jeffrey fluid saturated permeable layer is studied. The improved Darcy model is applied to depict the rheological performance of Jeffrey fluid flow in porous medium. The approximate analytical solution with overall error 0.4 % and numerical solution accurate to one decimal place are presented using the Galerkin process. The analysis reveals that the convective motion concentrates in the top layer if it occurred with sufficiently high value of the Darcy–Eckert number. The rotation factor and the Péclet number postponement the onset of convective drive while, the Gebhart number quicken it weakly. In the occurrence of rotation, the Jeffrey factor displays dual impact on the coming of convective movement. The magnitude of the convection cell declines with increasing the rotation factor, the Jeffrey factor and the Péclet number, while it decreases with enhancing the Gebhart number. It is also found that in the lack of rotation, the Jeffrey factor has no impression on the extent of the convective cell, whereas in the nonexistence of the Péclet number, the Gebhart number has no impact on the arrival of convective drive as well as on the magnitude of the convective cells.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determining pressure from velocity via physics-informed neural network 通过物理信息神经网络根据速度确定压力
IF 2.5 3区 工程技术
European Journal of Mechanics B-fluids Pub Date : 2024-09-03 DOI: 10.1016/j.euromechflu.2024.08.007
{"title":"Determining pressure from velocity via physics-informed neural network","authors":"","doi":"10.1016/j.euromechflu.2024.08.007","DOIUrl":"10.1016/j.euromechflu.2024.08.007","url":null,"abstract":"<div><p>This paper describes a physics-informed neural network (PINN) for determining pressure from velocity where the Navier-Stokes (NS) equations are incorporated as a physical constraint, but the boundary condition is not explicitly imposed. The exact solution of the NS equations for the oblique Hiemenz flow is utilized to evaluate the accuracy of the PINN and the effects of the relevant factors including the boundary condition, data noise, number of collocation points, Reynolds number and impingement angle. In addition, the PINN is evaluated in the two-dimensional flow over a NACA0012 airfoil based on computational fluid dynamics (CFD) simulation. Further, the PINN is applied to the velocity data of a flying hawkmoth (Manduca) obtained in high-speed schlieren visualizations, revealing some interesting pressure features associated with the vortex structures generated by the flapping wings. Overall, the PINN offers an alternative solution for the problem of pressure from velocity with the reasonable accuracy and robustness.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142128593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信