{"title":"翼面变形控制三维流动分离的非定常空气动力学研究","authors":"Aritras Roy , Rinku Mukherjee","doi":"10.1016/j.euromechflu.2025.204348","DOIUrl":null,"url":null,"abstract":"<div><div>The ability of a morphed wing to prevent 3D flow separation when operating at high angles of attack and when the flow past it is unsteady is investigated. The wing is morphed using an external skin attached to the leading edge of the wing, which takes the shape of the suction/top surface of the wing, when not in use. When required, the external skin is deployed but with a new shape, which is a morphed version of the top surface of the wing and has the ability to prevent flow separation. The shape of the external skin is predicted using a numerical algorithm developed for this purpose that couples an Unsteady Vortex Lattice Method with another in-house steady-state Vortex Lattice Method algorithm that uses a ‘decambering’ concept to ‘correct’ the local camberline to account for flow separation. Physical wing models are then fabricated along with the numerically predicted morphed surfaces to be attached externally at the leading edge and tested in the wind tunnel. Unsteady change in angle of attack is implemented using an in-house mechanism developed for this purpose, where the rate of change of angle of attack, <span><math><mrow><mfrac><mrow><mi>∂</mi><mi>α</mi></mrow><mrow><mi>∂</mi><mi>t</mi></mrow></mfrac><mo>=</mo><mover><mrow><mi>α</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow></math></span> is varied as <span><math><mrow><mn>0</mn><mo>.</mo><mn>1</mn><mo>°</mo><mo>/</mo><mi>s</mi><mo><</mo><mover><mrow><mi>α</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo><</mo><mn>1</mn><mo>°</mo><mo>/</mo><mi>s</mi></mrow></math></span>. Unsteady aerodynamic characteristics like <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>M</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> are measured for change in Reynolds number, <span><math><mrow><mn>0</mn><mo>.</mo><mn>045</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup><mo><</mo><mi>R</mi><mi>e</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>. Flow visualization using smoke is conducted in the wind tunnel. CFD is also used to study such a morphing wing at high angles of attack including at post-stall. Spectral densities of the transient load data, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and unsteady sectional lift coefficient, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>l</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>c</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> are calculated for both the baseline and morphed wings. Unsteady analysis of the morphed wing is also used to implement a user-defined design 2D <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> for enhanced aerodynamic performance.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"115 ","pages":"Article 204348"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsteady aerodynamics of the control of three dimensional flow separation by morphing a wing surface\",\"authors\":\"Aritras Roy , Rinku Mukherjee\",\"doi\":\"10.1016/j.euromechflu.2025.204348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ability of a morphed wing to prevent 3D flow separation when operating at high angles of attack and when the flow past it is unsteady is investigated. The wing is morphed using an external skin attached to the leading edge of the wing, which takes the shape of the suction/top surface of the wing, when not in use. When required, the external skin is deployed but with a new shape, which is a morphed version of the top surface of the wing and has the ability to prevent flow separation. The shape of the external skin is predicted using a numerical algorithm developed for this purpose that couples an Unsteady Vortex Lattice Method with another in-house steady-state Vortex Lattice Method algorithm that uses a ‘decambering’ concept to ‘correct’ the local camberline to account for flow separation. Physical wing models are then fabricated along with the numerically predicted morphed surfaces to be attached externally at the leading edge and tested in the wind tunnel. Unsteady change in angle of attack is implemented using an in-house mechanism developed for this purpose, where the rate of change of angle of attack, <span><math><mrow><mfrac><mrow><mi>∂</mi><mi>α</mi></mrow><mrow><mi>∂</mi><mi>t</mi></mrow></mfrac><mo>=</mo><mover><mrow><mi>α</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow></math></span> is varied as <span><math><mrow><mn>0</mn><mo>.</mo><mn>1</mn><mo>°</mo><mo>/</mo><mi>s</mi><mo><</mo><mover><mrow><mi>α</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo><</mo><mn>1</mn><mo>°</mo><mo>/</mo><mi>s</mi></mrow></math></span>. Unsteady aerodynamic characteristics like <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>M</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> are measured for change in Reynolds number, <span><math><mrow><mn>0</mn><mo>.</mo><mn>045</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup><mo><</mo><mi>R</mi><mi>e</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>. Flow visualization using smoke is conducted in the wind tunnel. CFD is also used to study such a morphing wing at high angles of attack including at post-stall. Spectral densities of the transient load data, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and unsteady sectional lift coefficient, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>l</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>c</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> are calculated for both the baseline and morphed wings. Unsteady analysis of the morphed wing is also used to implement a user-defined design 2D <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> for enhanced aerodynamic performance.</div></div>\",\"PeriodicalId\":11985,\"journal\":{\"name\":\"European Journal of Mechanics B-fluids\",\"volume\":\"115 \",\"pages\":\"Article 204348\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics B-fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997754625001293\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754625001293","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Unsteady aerodynamics of the control of three dimensional flow separation by morphing a wing surface
The ability of a morphed wing to prevent 3D flow separation when operating at high angles of attack and when the flow past it is unsteady is investigated. The wing is morphed using an external skin attached to the leading edge of the wing, which takes the shape of the suction/top surface of the wing, when not in use. When required, the external skin is deployed but with a new shape, which is a morphed version of the top surface of the wing and has the ability to prevent flow separation. The shape of the external skin is predicted using a numerical algorithm developed for this purpose that couples an Unsteady Vortex Lattice Method with another in-house steady-state Vortex Lattice Method algorithm that uses a ‘decambering’ concept to ‘correct’ the local camberline to account for flow separation. Physical wing models are then fabricated along with the numerically predicted morphed surfaces to be attached externally at the leading edge and tested in the wind tunnel. Unsteady change in angle of attack is implemented using an in-house mechanism developed for this purpose, where the rate of change of angle of attack, is varied as . Unsteady aerodynamic characteristics like are measured for change in Reynolds number, . Flow visualization using smoke is conducted in the wind tunnel. CFD is also used to study such a morphing wing at high angles of attack including at post-stall. Spectral densities of the transient load data, and unsteady sectional lift coefficient, are calculated for both the baseline and morphed wings. Unsteady analysis of the morphed wing is also used to implement a user-defined design 2D for enhanced aerodynamic performance.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.