Unsteady aerodynamics of the control of three dimensional flow separation by morphing a wing surface

IF 2.5 3区 工程技术 Q2 MECHANICS
Aritras Roy , Rinku Mukherjee
{"title":"Unsteady aerodynamics of the control of three dimensional flow separation by morphing a wing surface","authors":"Aritras Roy ,&nbsp;Rinku Mukherjee","doi":"10.1016/j.euromechflu.2025.204348","DOIUrl":null,"url":null,"abstract":"<div><div>The ability of a morphed wing to prevent 3D flow separation when operating at high angles of attack and when the flow past it is unsteady is investigated. The wing is morphed using an external skin attached to the leading edge of the wing, which takes the shape of the suction/top surface of the wing, when not in use. When required, the external skin is deployed but with a new shape, which is a morphed version of the top surface of the wing and has the ability to prevent flow separation. The shape of the external skin is predicted using a numerical algorithm developed for this purpose that couples an Unsteady Vortex Lattice Method with another in-house steady-state Vortex Lattice Method algorithm that uses a ‘decambering’ concept to ‘correct’ the local camberline to account for flow separation. Physical wing models are then fabricated along with the numerically predicted morphed surfaces to be attached externally at the leading edge and tested in the wind tunnel. Unsteady change in angle of attack is implemented using an in-house mechanism developed for this purpose, where the rate of change of angle of attack, <span><math><mrow><mfrac><mrow><mi>∂</mi><mi>α</mi></mrow><mrow><mi>∂</mi><mi>t</mi></mrow></mfrac><mo>=</mo><mover><mrow><mi>α</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow></math></span> is varied as <span><math><mrow><mn>0</mn><mo>.</mo><mn>1</mn><mo>°</mo><mo>/</mo><mi>s</mi><mo>&lt;</mo><mover><mrow><mi>α</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>&lt;</mo><mn>1</mn><mo>°</mo><mo>/</mo><mi>s</mi></mrow></math></span>. Unsteady aerodynamic characteristics like <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>M</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> are measured for change in Reynolds number, <span><math><mrow><mn>0</mn><mo>.</mo><mn>045</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup><mo>&lt;</mo><mi>R</mi><mi>e</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>. Flow visualization using smoke is conducted in the wind tunnel. CFD is also used to study such a morphing wing at high angles of attack including at post-stall. Spectral densities of the transient load data, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and unsteady sectional lift coefficient, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><msub><mrow><mi>l</mi></mrow><mrow><mi>s</mi><mi>e</mi><mi>c</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> are calculated for both the baseline and morphed wings. Unsteady analysis of the morphed wing is also used to implement a user-defined design 2D <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> for enhanced aerodynamic performance.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"115 ","pages":"Article 204348"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754625001293","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The ability of a morphed wing to prevent 3D flow separation when operating at high angles of attack and when the flow past it is unsteady is investigated. The wing is morphed using an external skin attached to the leading edge of the wing, which takes the shape of the suction/top surface of the wing, when not in use. When required, the external skin is deployed but with a new shape, which is a morphed version of the top surface of the wing and has the ability to prevent flow separation. The shape of the external skin is predicted using a numerical algorithm developed for this purpose that couples an Unsteady Vortex Lattice Method with another in-house steady-state Vortex Lattice Method algorithm that uses a ‘decambering’ concept to ‘correct’ the local camberline to account for flow separation. Physical wing models are then fabricated along with the numerically predicted morphed surfaces to be attached externally at the leading edge and tested in the wind tunnel. Unsteady change in angle of attack is implemented using an in-house mechanism developed for this purpose, where the rate of change of angle of attack, αt=α̇ is varied as 0.1°/s<α̇<1°/s. Unsteady aerodynamic characteristics like CL(t),CD(t),CM(t) are measured for change in Reynolds number, 0.045×106<Re<0.1×106. Flow visualization using smoke is conducted in the wind tunnel. CFD is also used to study such a morphing wing at high angles of attack including at post-stall. Spectral densities of the transient load data, CL(t),CD(t) and unsteady sectional lift coefficient, Clsec(t) are calculated for both the baseline and morphed wings. Unsteady analysis of the morphed wing is also used to implement a user-defined design 2D Cl for enhanced aerodynamic performance.
翼面变形控制三维流动分离的非定常空气动力学研究
研究了变形翼在大迎角和非定常流经过变形翼时防止三维流动分离的能力。机翼在不使用时,使用附着在机翼前缘的外皮进行变形,外皮采用机翼吸力/顶部表面的形状。当需要时,外皮被展开,但具有新的形状,这是机翼顶部表面的变形版本,具有防止流动分离的能力。使用为此目的开发的数值算法来预测外表皮的形状,该算法将非定常涡点阵法与另一种内部稳态涡点阵法相结合,该算法使用“decamberding”概念来“纠正”局部凸轮轴,以解释流动分离。然后制作物理机翼模型,并将数值预测的变形表面附着在前缘外部,并在风洞中进行测试。迎角的非定常变化是使用为此目的开发的内部机制实现的,其中迎角的变化率∂α∂t=α ω为0.1°/s<α ω <1°/s。测量非定常气动特性CL(t)、CD(t)、CM(t)的雷诺数变化,0.045×106<Re<0.1×106。利用烟雾在风洞中进行了流动显示。CFD还用于研究大迎角(包括失速后)下的变形机翼。计算了瞬态载荷数据的谱密度CL(t)、CD(t)和非定常截面升力系数Clsec(t)。变形机翼的非定常分析也用于实现用户自定义设计2D Cl,以增强气动性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信