European Journal of Drug Metabolism and Pharmacokinetics最新文献

筛选
英文 中文
Pharmacokinetics of Dasatinib in Rats: a Potential Food-Drug Interaction with Naringenin. 大鼠体内达沙替尼的药代动力学:与柚皮苷的潜在食物-药物相互作用
IF 1.9 4区 医学
European Journal of Drug Metabolism and Pharmacokinetics Pub Date : 2024-03-01 Epub Date: 2024-02-20 DOI: 10.1007/s13318-024-00881-9
Mohammad Raish, Ajaz Ahmad, Badr Abdul Karim, Yousef A Bin Jardan, Abdul Ahad, Muzaffar Iqbal, Khalid M Alkharfy, Fahad I Al-Jenoobi, Omer Mansour Mohammed
{"title":"Pharmacokinetics of Dasatinib in Rats: a Potential Food-Drug Interaction with Naringenin.","authors":"Mohammad Raish, Ajaz Ahmad, Badr Abdul Karim, Yousef A Bin Jardan, Abdul Ahad, Muzaffar Iqbal, Khalid M Alkharfy, Fahad I Al-Jenoobi, Omer Mansour Mohammed","doi":"10.1007/s13318-024-00881-9","DOIUrl":"10.1007/s13318-024-00881-9","url":null,"abstract":"<p><strong>Background and objectives: </strong>The novel tyrosine kinase inhibitor (TKI) dasatinib, a multitarget inhibitor of Bcr-Abl and Src family kinases, has been licensed for the treatment of Ph+ acute lymphoblastic leukemia and chronic myeloid leukemia. Many citrus-based foods include the flavonoid naringenin, which is commonly available. Dasatinib is a Cyp3a4, P-gp, and Bcrp1 substrate, which makes it sensitive to potential food-drug interactions. The concurrent use of naringenin may change the pharmacokinetics of dasatinib, which could result in adverse effects and toxicity. The present investigation examined the impact of naringenin on the pharmacokinetics interactions of DAS and proposes a possible interaction mechanism in Wistar rats.</p><p><strong>Methods: </strong>Rats were provided with a single oral dose of dasatinib (25 mg/kg) with or without naringenin pretreatment (150 mg/kg p.o. daily for 7 days, n = 6 in each group). Dasatinib was quantified in plasma by UHPLC MS/MS assay. Noncompartmental analysis was used to compute the pharmacokinetic parameters, and immunoblot was used to assess the protein expression in the hepatic and intestinal tissues.</p><p><strong>Results: </strong>Following 7 days of naringenin pretreatment, the plasma mean concentration of dasatinib was enhanced compared with without pretreatment. In rats that were pretreated with naringenin, the pharmacokinetics of the orally administered dasatinib (25 mg/kg) was shown to be significantly different from that of dasatinib given without pretreatment (p < 0.05). There was a significant enhancement in pharmacokinetic parameters elimination half-life (T<sub>1/2</sub>), time to maximum concentration ( T<sub>max</sub>), maximum concentration )C<sub>max</sub>), area under the concentration-time curve (AUC<sub>0-t</sub>), area under the moment curve (AUMC<sub>0-∞</sub>), and mean residence time (MRT) by 28.41%, 50%, 103.54%, 72.64%, 115.08%, and 15.19%, respectively (p < 0.05) and suppression in elimination rate constant (K<sub>el</sub>), volume of distribution (V<sub>d</sub>), and clearance (CL) by 21.09%, 31.13%, and 46.25%, respectively, in comparison with dasatinib alone group (p < 0.05). The enhancement in dasatinib bioavailability and systemic exposure resulted from the significant inhibition of Cyp3a2, Mdr1/P-gp, and Bcrp1 expression and suppression of the dasatinib hepatic and intestinal metabolism, which enhanced the rate of dasatinib absorption and decreased its elimination.</p><p><strong>Conclusion: </strong>Concurrent use of naringenin-containing supplements, herbs, or foods with dasatinib may cause serious and potentially life-threatening drug interactions. Further studies are necessary to determine the clinical significance of these findings.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":" ","pages":"239-247"},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139905267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Bile Acids on Clindamycin Hydrochloride Skin Permeability: In Vitro and In Silico Preliminary Study. 胆汁酸对盐酸克林霉素皮肤渗透性的影响:体外和室内初步研究。
IF 1.9 4区 医学
European Journal of Drug Metabolism and Pharmacokinetics Pub Date : 2024-03-01 Epub Date: 2024-02-08 DOI: 10.1007/s13318-024-00878-4
Dragana Zaklan, Dušan Nešić, Darko Mitrović, Slavica Lazarević, Maja Đanić, Momir Mikov, Nebojša Pavlović
{"title":"Influence of Bile Acids on Clindamycin Hydrochloride Skin Permeability: In Vitro and In Silico Preliminary Study.","authors":"Dragana Zaklan, Dušan Nešić, Darko Mitrović, Slavica Lazarević, Maja Đanić, Momir Mikov, Nebojša Pavlović","doi":"10.1007/s13318-024-00878-4","DOIUrl":"10.1007/s13318-024-00878-4","url":null,"abstract":"<p><strong>Background and objective: </strong>Topical clindamycin formulations are widely used in clinical practice, but poor bioavailability and restricted skin penetration considerably limit their therapeutic efficacy. Penetration enhancement represents a promising and rational strategy to overcome the drawbacks of conventional topical pharmaceutical formulations. We aim to assess the influence of cholic acid (CA) and deoxycholic acid (DCA) on the permeability of clindamycin hydrochloride by performing the in vitro skin parallel artificial membrane permeability assay (skin-PAMPA) at two relevant pH values (5.5 and 6.5) and the interactions of tested substances with skin ATP-binding cassette (ABC) transporters in silico.</p><p><strong>Methods: </strong>After the incubation period, the clindamycin hydrochloride concentrations in both compartments were determined spectrophotometrically, and the apparent permeability coefficients (P<sub>app</sub>) were calculated. Vienna LiverTox web service was used to predict the interactions of clindamycin and bile acids with potential drug transporters located in human skin.</p><p><strong>Results: </strong>Both CA and DCA at the highest studied concentration of 100 μM in the tested solutions increased the skin-PAMPA membrane permeability of clindamycin hydrochloride. This effect was more pronounced for CA and at a higher studied pH value of 6.5, which is characteristic of most dermatological indications treated with topical clindamycin preparations. Clindamycin transport may also be mediated by ABC transporters located in skin and facilitated in the presence of bile acids.</p><p><strong>Conclusions: </strong>The results of this study provide a solid foundation for further research directed at the improvement of topical formulations using bile acids as penetration-enhancing excipients, as well as the therapeutic efficacy of clindamycin hydrochloride.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":" ","pages":"219-228"},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139706458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Antibiotic Therapy for Intravenous Drug Users: A Narrative Review Unraveling Pharmacokinetics/Pharmacodynamics Challenges. 优化静脉注射吸毒者的抗生素治疗:药代动力学/药效学挑战:叙述性综述》。
IF 1.9 4区 医学
European Journal of Drug Metabolism and Pharmacokinetics Pub Date : 2024-03-01 Epub Date: 2024-02-08 DOI: 10.1007/s13318-024-00882-8
Marta Colaneri, Camilla Genovese, Pietro Valsecchi, Matteo Calia, Dario Cattaneo, Andrea Gori, Raffaele Bruno, Elena Seminari
{"title":"Optimizing Antibiotic Therapy for Intravenous Drug Users: A Narrative Review Unraveling Pharmacokinetics/Pharmacodynamics Challenges.","authors":"Marta Colaneri, Camilla Genovese, Pietro Valsecchi, Matteo Calia, Dario Cattaneo, Andrea Gori, Raffaele Bruno, Elena Seminari","doi":"10.1007/s13318-024-00882-8","DOIUrl":"10.1007/s13318-024-00882-8","url":null,"abstract":"<p><p>Intravenous drug users (IVDUs) face heightened susceptibility to life-threatening gram-positive bacterial infections, particularly methicillin-resistant Staphylococcus aureus (MRSA). While the standard antibiotic dosing strategies for special patients, such as obese or critically ill individuals, are known to be inadequate, raising concerns about treatment efficacy, a similar sort of understanding has not been assessed for IVDUs yet. With this in mind, this review examines the pharmacokinetic/pharmacodynamic characteristics of antibiotics commonly used against gram-positive bacteria in IVDUs. Focusing on daptomycin, vancomycin, teicoplanin, aminoglycosides, and the novel lipoglycopeptide dalbavancin, the study reveals significant pharmacokinetic variations in IVDUs, suggesting the need for personalized dosing. Concomitant opioid substitution therapy and other factors, such as malnutrition, contribute to altered pharmacokinetics/pharmacodynamics, emphasizing the importance of targeted therapeutic drug monitoring. Overall, our study calls for increased awareness among clinicians regarding the unique pharmacokinetic/pharmacodynamic challenges in IVDUs and advocates for tailored antibiotic dosing strategies to enhance treatment outcomes in this marginalized population.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":" ","pages":"123-129"},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139706459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacokinetics of Long-Acting Methylphenidate: Formulation Differences, Bioequivalence, Interchangeability. 长效哌醋甲酯的药代动力学:制剂差异、生物等效性和互换性。
IF 1.9 4区 医学
European Journal of Drug Metabolism and Pharmacokinetics Pub Date : 2024-03-01 Epub Date: 2023-12-21 DOI: 10.1007/s13318-023-00873-1
Mostafa Moharram, Tony Kiang
{"title":"Pharmacokinetics of Long-Acting Methylphenidate: Formulation Differences, Bioequivalence, Interchangeability.","authors":"Mostafa Moharram, Tony Kiang","doi":"10.1007/s13318-023-00873-1","DOIUrl":"10.1007/s13318-023-00873-1","url":null,"abstract":"<p><p>BACKGROUND AND OBJECTIVE: Attention deficit hyperactivity disorder is one of the most common neuropsychiatric conditions in children, and methylphenidate (MPH) is one of the first-line therapies. MPH is available in a variety of extended-release (ER) formulations worldwide, and most formulations are not considered bioequivalent due to differences in pharmacokinetics. It is hypothesized that the current bioequivalence guidelines from the different regulatory bodies may generate inconsistent findings or recommendations when assessing the bioequivalence of ER MPH formulations. This manuscript aims to conduct a comprehensive and narrative critical literature review to analyze pharmacokinetic data pertaining to ER formulations of MPH in order to assess bioequivalence, differences in regulatory guidelines, and additional pharmacokinetic-pharmacodynamic parameters that may help define interchangeability.</p><p><strong>Methods: </strong>A literature search was conducted in EMBASE, Medline, and Cochrane Library with no time limits. Study characteristics, non-compartmental pharmacokinetic parameters, and bioequivalence data were extracted for analysis.</p><p><strong>Results: </strong>Thirty-three studies were identified with primary pharmacokinetic data after the administration of ER MPH, of which 10 were direct comparative studies (i.e., at least 2 formulations tested within a single setting) and 23 were indirect comparisons (i.e., different experimental settings). Two formulations were consistently reported as bioequivalent across the regulatory bodies using criteria from their guidance documents, although inconsistencies have been observed. However, when additional kinetic criteria (discussed in this manuscript) were imposed, only one study met the more stringent definition of bioequivalence. Various clinical factors also had inconsistent effects on the pharmacokinetics and interchangeability of the different formulations, which were associated with a lack of standardization for assessing covariates across the regulatory agencies.</p><p><strong>Conclusion: </strong>Additional pharmacokinetic parameters and consistency in guidelines across the regulatory bodies may improve bioequivalence assessments. Based on our findings, more research is also required to understand whether bioequivalence is an appropriate measure for determining MPH interchangeability. This critical review is suitable for formulation scientists, clinical pharmacologists, and clinicians.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":" ","pages":"149-170"},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138828888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacokinetic Interaction Between Imatinib and Metformin in Rats. 大鼠体内伊马替尼与二甲双胍的药代动力学相互作用
IF 1.9 4区 医学
European Journal of Drug Metabolism and Pharmacokinetics Pub Date : 2024-03-01 Epub Date: 2023-12-23 DOI: 10.1007/s13318-023-00869-x
Naling Fan, Liying Du, Teng Guo, Mingfeng Liu, Xinran Chen
{"title":"Pharmacokinetic Interaction Between Imatinib and Metformin in Rats.","authors":"Naling Fan, Liying Du, Teng Guo, Mingfeng Liu, Xinran Chen","doi":"10.1007/s13318-023-00869-x","DOIUrl":"10.1007/s13318-023-00869-x","url":null,"abstract":"<p><strong>Background and objective: </strong>Imatinib is primarily transported into the liver by organic cation transporter 1 (OCT1), organic anion transporting polypeptide 1B3 (OATP1B3), and novel organic cation transporter 2 (OCTN2), which is the first step in the metabolic and elimination of imatinib. Patients taking imatinib may concurrently take metformin, a substrate for OCT1. Drug-drug interactions (DDI) may occur between imatinib and metformin, affecting the clinical efficacy of imatinib. This experiment aimed to investigate the pharmacokinetic effects of metformin on imatinib and its active metabolism of N-desmethyl imatinib in rats.</p><p><strong>Methods: </strong>Twenty healthy Sprague-Dawley rats were selected and randomly divided into control and experimental groups (10 rats per group). The control group was orally administered imatinib (30 mg/kg) for 14 days, and the experimental group was orally co-administered imatinib (30 mg/kg) and metformin (200 mg/kg) for 14 days. The plasma concentrations of imatinib and N-desmethyl imatinib in rats were determined by ultra-performance liquid chromatography-mass spectrometry. Pharmacokinetic parameters were calculated by DAS2.0 software.</p><p><strong>Results: </strong>After single-dose co-administration of imatinib and metformin on day 1, the AUC<sub>0-24</sub> (area under the plasma concentration-time curve) and C<sub>max</sub> (maximum concentration) of imatinib and the MRT (mean residence time) and C<sub>max</sub> of N-desmethyl imatinib in the experimental group were significantly decreased compared with the control group (P < 0.05). After multiple-dose co-administration of imatinib and metformin for 14 days, the AUC<sub>0-24</sub> and C<sub>max</sub> of both imatinib and N-desmethyl imatinib were significantly decreased in the experimental group (P < 0.05).</p><p><strong>Conclusion: </strong>With both single and multiple co-administration doses, metformin significantly changed the pharmacokinetic parameters of imatinib and N-desmethyl imatinib. The results suggest that care should be taken when metformin and imatinib are co-administered.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":" ","pages":"171-179"},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138884750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved Pharmacokinetic and Pharmacodynamic Profile of Deuterium-Reinforced Tricyclic Antidepressants Doxepin, Dosulepin, and Clomipramine in Animal Models. 在动物模型中改进氘强化三环类抗抑郁药多虑平、多虑平和氯米帕明的药代动力学和药效学特征
IF 1.9 4区 医学
European Journal of Drug Metabolism and Pharmacokinetics Pub Date : 2024-03-01 Epub Date: 2024-01-03 DOI: 10.1007/s13318-023-00870-4
Shreyash Moharir, Likhit Akotkar, Urmila Aswar, Dileep Kumar, Bapu Gawade, Kavita Pal, Rajesh Rane
{"title":"Improved Pharmacokinetic and Pharmacodynamic Profile of Deuterium-Reinforced Tricyclic Antidepressants Doxepin, Dosulepin, and Clomipramine in Animal Models.","authors":"Shreyash Moharir, Likhit Akotkar, Urmila Aswar, Dileep Kumar, Bapu Gawade, Kavita Pal, Rajesh Rane","doi":"10.1007/s13318-023-00870-4","DOIUrl":"10.1007/s13318-023-00870-4","url":null,"abstract":"<p><strong>Background and objectives: </strong>Doxepin, dosulepin, and clomipramine are tricyclic antidepressants (TCAs) that act as serotonin and noradrenaline reuptake inhibitors. The metabolites formed by N-dealkylation of these tricyclic antidepressants contribute to overall poor pharmacokinetics and efficacy. Deuteration of the methyl groups at metabolically active sites has been reported to be a useful strategy for developing more selective and potent antidepressants. This isotopic deuteration can lead to better bioavailability and overall effectiveness. The objective is to study the effect of site-selective deuteration of TCAs on their pharmacokinetic and pharmacodynamic profile by comparison with their nondeuterated counterparts.</p><p><strong>Methods: </strong>In the current study, the pharmacokinetic profile and antidepressant behavior of deuterated TCAs were evaluated using the forced swim test (FST) and tail suspension test (TST), using male Wistar rats and male Swiss albino mice, respectively; additionally, a synaptosomal reuptake study was carried out.</p><p><strong>Results: </strong>Compared with the nondeuterated parent drugs, deuterated forms showed improved efficacy in the behavior paradigm, indicating improved pharmacological activity. The pharmacokinetic parameters indicated increased maximum concentration in the plasma (C<sub>max</sub>), elimination half-life (t<sub>1/2</sub>), and area under the concentration-time curve (AUC)  in deuterated compounds. This can have a positive clinical impact on antidepressant treatment. Synaptosomal reuptake studies indicated marked inhibition of the reuptake mechanism of serotonin (5-HT) and norepinephrine.</p><p><strong>Conclusions: </strong>Deuterated TCAs can prove to be potentially better molecules in the treatment of neuropsychiatric disorders as compared with nondeuterated compounds. In addition, we have demonstrated a concept that metabolically active, site-selective deuteration can be beneficial for improving the pharmacokinetic and pharmacodynamic profiles of TCAs. A further toxicological study of these compounds is needed to validate their future clinical use.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":" ","pages":"181-190"},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139086460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacokinetic–Pharmacodynamic Modelling in Hemophilia A: Relating Thrombin and Plasmin Generation to Factor VIII Activity After Administration of a VWF/FVIII Concentrate 血友病 A 的药代动力学-药效学建模:服用 VWF/FVIII 浓缩液后凝血酶和凝血酶原的生成与因子 VIII 活性的关系
IF 1.9 4区 医学
European Journal of Drug Metabolism and Pharmacokinetics Pub Date : 2024-02-17 DOI: 10.1007/s13318-024-00876-6
Lars L. F. G. Valke, Michael E. Cloesmeijer, Hassan Mansouritorghabeh, Wideke Barteling, Nicole M. A. Blijlevens, Marjon H. Cnossen, Ron A. A. Mathôt, Saskia E. M. Schols, Waander L. van Heerde
{"title":"Pharmacokinetic–Pharmacodynamic Modelling in Hemophilia A: Relating Thrombin and Plasmin Generation to Factor VIII Activity After Administration of a VWF/FVIII Concentrate","authors":"Lars L. F. G. Valke, Michael E. Cloesmeijer, Hassan Mansouritorghabeh, Wideke Barteling, Nicole M. A. Blijlevens, Marjon H. Cnossen, Ron A. A. Mathôt, Saskia E. M. Schols, Waander L. van Heerde","doi":"10.1007/s13318-024-00876-6","DOIUrl":"https://doi.org/10.1007/s13318-024-00876-6","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Hemophilia A patients are treated with factor (F) VIII prophylactically to prevent bleeding. In general, dosage and frequency are based on pharmacokinetic measurements. Ideally, an alternative dose adjustment can be based on the hemostatic potential, measured with a thrombin generation assay (TGA), like the Nijmegen hemostasis assay.</p><h3 data-test=\"abstract-sub-heading\">Objective</h3><p>The objective of this study was to investigate the predicted performance of a previously developed pharmacokinetic–pharmacodynamic model for FVIII replacement therapy, relating FVIII dose and FVIII activity levels with thrombin and plasmin generation parameters.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Pharmacokinetic and pharmacodynamic measurements were obtained from 29 severe hemophilia A patients treated with pdVWF/FVIII concentrate (Haemate P<sup>®</sup>). The predictive performance of the previously developed pharmacokinetic–pharmacodynamic model was evaluated using nonlinear mixed-effects modeling (NONMEM). When predictions of FVIII activity or TGA parameters were inadequate [median prediction error (MPE) &gt; 20%], a new model was developed.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The original pharmacokinetic model underestimated clearance and was refined based on a two-compartment model. The pharmacodynamic model displays no bias in the observed normalized thrombin peak height and normalized thrombin potential (MPE of 6.83% and 7.46%). After re-estimating pharmacodynamic parameters, EC<sub>50</sub> and <i>E</i><sub>max</sub> values were relatively comparable between the original model and this group. Prediction of normalized plasmin peak height was inaccurate (MPE 58.9%).</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Our predictive performance displayed adequate thrombin pharmacodynamic predictions of the original model, but a new pharmacokinetic model was required. The pharmacodynamic model is not factor specific and applicable to multiple factor concentrates. A prospective study is needed to validate the impact of the FVIII dosing pharmacodynamic model on bleeding reduction in patients.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":"81 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139758320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Network Models for Predicting Solubility and Metabolism Class of Drugs in the Biopharmaceutics Drug Disposition Classification System (BDDCS). 生物制药药物配置分类系统(BDDCS)中预测药物溶解度和代谢类别的神经网络模型。
IF 1.9 4区 医学
European Journal of Drug Metabolism and Pharmacokinetics Pub Date : 2024-01-01 Epub Date: 2023-10-21 DOI: 10.1007/s13318-023-00861-5
Aryan Ashrafi, Kiarash Teimouri, Farnaz Aghazadeh, Ali Shayanfar
{"title":"Neural Network Models for Predicting Solubility and Metabolism Class of Drugs in the Biopharmaceutics Drug Disposition Classification System (BDDCS).","authors":"Aryan Ashrafi, Kiarash Teimouri, Farnaz Aghazadeh, Ali Shayanfar","doi":"10.1007/s13318-023-00861-5","DOIUrl":"10.1007/s13318-023-00861-5","url":null,"abstract":"<p><strong>Background and objective: </strong>The biopharmaceutics drug disposition classification system (BDDCS) categorizes drugs into four classes on the basis of their solubility and metabolism. This framework allows for the study of the pharmacokinetics of transporters and enzymatic metabolization on biopharmaceuticals, as well as drug-drug interactions in the body. The objective of the present study was to develop computational models by neural network models and structural parameters and physicochemical properties to estimate the class of a drug in the BDDCS system.</p><p><strong>Methods: </strong>In this study, deep learning methods were utilized to explore the potential of artificial and convolutional neural networks (ANNs and CNNs) in predicting the BDDCS class of 721 substances. The structural parameters and physicochemical properties [Abraham solvation parameters, octanol-water partition (log P) and over the pH range 1-7.5 (log D), number of rotatable bonds, hydrogen bond acceptor numbers, as well as hydrogen bond donor count] are calculated with various software. These compounds were then split into a training set consisting of 602 molecules and a test set of 119 compounds to validate the models.</p><p><strong>Results: </strong>The results of this study showed that neural network models using applied parameters of the drug, i.e., log D and Abraham solvation parameters, are able to predict the class of solubility and metabolism in the BDDCS system with good accuracy.</p><p><strong>Conclusions: </strong>Neural network models are well equipped to deal with the relations between the structural parameters and physicochemical properties of drugs and BDDCS classes. In addition, log D is a more suitable parameter compared with log P in predicting BDDCS.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":" ","pages":"1-6"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49675808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacokinetics of 4-Hydroxybenzaldehyde in Normal and Cerebral Ischemia-Reperfusion Injury Rats Based on Microdialysis Technique. 基于微透析技术的4-羟基苯甲醛在正常和脑缺血再灌注损伤大鼠体内的药动学研究。
IF 1.9 4区 医学
European Journal of Drug Metabolism and Pharmacokinetics Pub Date : 2024-01-01 Epub Date: 2023-11-24 DOI: 10.1007/s13318-023-00863-3
Chunping Xu, Jin Feng, Hang Sun, Mingli Yan, Qian Yang, Xiaonan Zhou, Jianguang Yang, Fangyan He, Qing Lin
{"title":"Pharmacokinetics of 4-Hydroxybenzaldehyde in Normal and Cerebral Ischemia-Reperfusion Injury Rats Based on Microdialysis Technique.","authors":"Chunping Xu, Jin Feng, Hang Sun, Mingli Yan, Qian Yang, Xiaonan Zhou, Jianguang Yang, Fangyan He, Qing Lin","doi":"10.1007/s13318-023-00863-3","DOIUrl":"10.1007/s13318-023-00863-3","url":null,"abstract":"<p><strong>Aim: </strong>4-Hydroxybenzaldehyde (4-HBd) is used for the treatment of headaches, dizziness, and convulsions. The objective of this study was to characterize the pharmacokinetics of 4-HBd in cerebral ischemia-reperfusion injury (CIRI) rats by microdialysis technology with high-performance liquid chromatography with diode-array detection (HPLC-DAD) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS).</p><p><strong>Methods: </strong>Microdialysis was used to collect blood, feces, and urine of normal and CIRI model rats. Pharmacokinetic parameters were determined using HPLC-DAD and 4-HBd metabolites were determined using UPLC-MS.</p><p><strong>Results: </strong>After gavage of 4-HBd in normal and middle cerebral artery occlusion/reperfusion (MCAO/R) rats, it was widely distributed to all tissues (heart, liver, spleen, lung, kidney, and brain) in both the equilibrium and elimination phases, and the distribution pattern was basically the same; the highest concentration was found in the brain. The absolute bioavailability of 4-HBd was 5.33%; however, after intragastric administration in normal and MCAO/R rats, fecal and urinary excretion of 4-HBd accounted for 0.02% and 0.01% and for 0.01% and 0.03% of the dosage, respectively. Furthermore, 4-HBd was rapidly metabolized into 4-hydroxybenzoic acid (4-HBA) after administration in both the control and MCAO/R groups. Compared with the control, the peak time of 4-HBd plasma concentration in the MCAO/R rats decreased from 10.67 min to 8.83 min, the area under the concentration-time curve decreased significantly, and the half-life increased from 31.81 min to 78.85 min.</p><p><strong>Conclusions: </strong>The rapid absorption and low absolute bioavailability of 4-HBd by gavage in rats are followed by rapid and wide distribution to various tissues and organs, including the brain. The prototype drug is excreted in the feces and urine in low amounts, and it is metabolized to 4-HBA in large amounts in vivo; the pathological state of the MCAO/R model mainly affects its absorption degree and metabolism rate.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":" ","pages":"23-32"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138433572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mass Balance and Metabolic Pathways of Eliapixant, a P2X3 Receptor Antagonist, in Healthy Male Volunteers. P2X3受体拮抗剂Eliapixant在健康男性志愿者中的质量平衡和代谢途径
IF 1.9 4区 医学
European Journal of Drug Metabolism and Pharmacokinetics Pub Date : 2024-01-01 Epub Date: 2023-12-03 DOI: 10.1007/s13318-023-00866-0
Stefanie Reif, Marcus-Hillert Schultze-Mosgau, Anna Engelen, Isabel Piel, Karsten Denner, Ad Roffel, Renger Tiessen, Stefan Klein, Klaus Francke, Antje Rottmann
{"title":"Mass Balance and Metabolic Pathways of Eliapixant, a P2X3 Receptor Antagonist, in Healthy Male Volunteers.","authors":"Stefanie Reif, Marcus-Hillert Schultze-Mosgau, Anna Engelen, Isabel Piel, Karsten Denner, Ad Roffel, Renger Tiessen, Stefan Klein, Klaus Francke, Antje Rottmann","doi":"10.1007/s13318-023-00866-0","DOIUrl":"10.1007/s13318-023-00866-0","url":null,"abstract":"<p><strong>Background: </strong>Overactive adenosine triphosphate signaling via P2X3 homotrimeric receptors is implicated in multiple conditions. To fully understand the metabolism and elimination pathways of eliapixant, a study was conducted to assess the pharmacokinetics, mass balance, and routes of excretion of a single oral dose of the selective P2X3 receptor antagonist eliapixant, in addition to an in vitro characterization.</p><p><strong>Methods: </strong>In this single-center open-label non-randomized non-placebo-controlled phase I study, healthy male subjects (n = 6) received a single dose of 50 mg eliapixant blended with 3.7 MBq [<sup>14</sup>C]eliapixant as a PEG 400-based oral solution. Total radioactivity and metabolites excreted in urine and feces, and pharmacokinetics of total radioactivity, eliapixant, and metabolites in plasma were assessed via liquid scintillation counting and high-performance liquid chromatography-based methods coupled to radiometric and mass spectrometric detection. Metabolite profiles of eliapixant in human in vitro systems and metabolizing enzymes were also investigated.</p><p><strong>Results: </strong>After administration as an oral solution, eliapixant was rapidly absorbed, reaching maximum plasma concentrations within 2 h. Eliapixant was eliminated from plasma with a mean terminal half-life of 48.3 h. Unchanged eliapixant was the predominant component in plasma (72.6% of total radioactivity area under the curve). The remaining percentage of drug-related components in plasma probably represented the sum of many metabolites, detected in trace amounts. Mean recovery of total radioactivity was 97.9% of the administered dose (94.3-99.4%) within 14 days, with 86.3% (84.8-88.1%) excreted via feces and 11.6% (9.5-13.1%) via urine. Excretion of parent drug was minimal in feces (0.7% of dose) and urine (≈ 0.5%). In feces, metabolites formed by oxidation represented > 90% of excreted total radioactivity. The metabolites detected in the in vitro experiments were similar to those identified in vivo.</p><p><strong>Conclusion: </strong>Complete recovery of administered eliapixant-related radioactivity was observed in healthy male subjects with predominant excretion via feces. Eliapixant was almost exclusively cleared by oxidative biotransformation (> 90% of dose), with major involvement of cytochrome P450 3A4. Excretion of parent drug was of minor importance (~ 1% of dose).</p><p><strong>Clinical trial registration: </strong>ClinicalTrials.gov: NCT04487431 (registered 27 July 2020)/EudraCT number: 2020-000519-54 (registered 3 February 2020), NCT02817100 (registered 26 June 2016), NCT03310645 (registered 16 October 2017).</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":" ","pages":"71-85"},"PeriodicalIF":1.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138477085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信