{"title":"利用高效液相色谱-质谱法研究新型平滑肌抑制剂 TPB15 治疗大鼠三阴性乳腺癌的药代动力学和生物利用度","authors":"Bo-Yu Chen, Jia-Huan Xu, Qian-Qing Chen, Huan-Xian Wu, Bao-Fang Ou, Zhiwei Zhou, Fei Xu, Shao-Yu Wu, Shui-Lin Xie, Ding-Sheng Wen","doi":"10.1007/s13318-024-00911-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Smoothened (SMO), a key component of the hedgehog signaling pathway, represents a therapeutic target for triple negative breast cancer (TNBC), yet the chemotherapy response rate in TNBC patients is only 40-50%, underscoring the urgent need for the development of novel drugs to effectively treat this condition. The novel compound TPB15, an SMO inhibitor derived from [1,2,4] triazolo [4,3-α] pyridines, demonstrated superior anti-TNBC activity and lower toxicity compared to the first SMO inhibitor vismodegib in both in vitro and in vivo. However, the compound's pharmacokinetic properties remain unclear. The present work aims to develop a simple HPLC-MS/MS method to profile the pharmacokinetics and bioavailability of TPB15 in rats as a ground work for further clinical research.</p><p><strong>Methods: </strong>Separation was performed on an Agilent ZORBAX StableBond C18 column by gradient elution using acetonitrile and 0.1% formic acid as mobile phase at a flow rate of 0.3 mL/min. Multiple reaction monitoring(MRM) in positive mode with the transitions of m/z 454.2 → 100.0, 248.1 → 121.1 was employed to determine TPB15 and internal standard tinidazole, respectively. The specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover of the method was validated. The pharmacokinetics and bioavailability study of TPB15 were carried out on rats through intravenous injection at the dose of 5 mg/kg and oral gavage at the dose of 25 mg/kg, and the pharmacokinetics parameters were calculated by the non-compartment analysis using the pharmacokinetics software DAS 2.1.1.</p><p><strong>Results: </strong>The values of specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover satisfied the acceptable limits. The lower limit of quantification of this method was 10 ng/mL with a linear range of 10-2000 ng/mL. The validated method was then applied to pharmacokinetics and bioavailability studies in rat by dosing with gavage (25 mg/kg) and intravenous injection(5 mg/kg), and the oral bioavailability of TBP15 in rat was calculated as 16.4 ± 3.5%. The pharmacokinetic parameters were calculated as following: maximum of plasma concentration (C<sub>max</sub>) (PO: 2787.17 ± 279.45 µg/L), Time to maximum plasma concentration (T<sub>max</sub>) (PO: 4.20 ± 0.90 h), the area under the concentration-time curve 0 to time (AUC<sub>0-t</sub>) (PO: 17,373.03 ± 2585.18 ng/mL·h, IV: 21,129.79 ± 3360.84 ng/mL·h), the area under the concentration-time curve 0 to infinity (AUC<sub>0-∞</sub>) (PO: 17,443.85 ± 2597.63 ng/mL·h, IV: 17,443.85 ± 2597.63 ng/mL·h), terminal elimination half-life (t<sub>1/2</sub>) (PO: 7.26 ± 2.16 h, IV: 4.78 ± 1.09 h).</p><p><strong>Conclusions: </strong>TPB15, a promising candidate for treating TNBC, has demonstrated outstanding efficacy and safety in vitro and in vivo. This study established a simple, sensitive, and rapid HPLC-MS/MS bioanalytical method, developed and validated in accordance with FDA and EMA guidelines, for conducting pharmacokinetic and bioavailability studies of TPB15. The results revealed a favorable pharmacokinetic profile owing to its long t<sub>1/2</sub>. Nevertheless, the next phase of research should include formulation screening to enhance bioavailability, as well as clinical trials, metabolism pathway analysis, and assessment of potential drug-drug interactions.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":" ","pages":"645-655"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pharmacokinetics and Bioavailability Study of a Novel Smoothened Inhibitor TPB15 for Treatment of Triple-Negative Breast Cancer in Rats by High Performance Liquid Chromatography-Mass Spectrometry.\",\"authors\":\"Bo-Yu Chen, Jia-Huan Xu, Qian-Qing Chen, Huan-Xian Wu, Bao-Fang Ou, Zhiwei Zhou, Fei Xu, Shao-Yu Wu, Shui-Lin Xie, Ding-Sheng Wen\",\"doi\":\"10.1007/s13318-024-00911-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objectives: </strong>Smoothened (SMO), a key component of the hedgehog signaling pathway, represents a therapeutic target for triple negative breast cancer (TNBC), yet the chemotherapy response rate in TNBC patients is only 40-50%, underscoring the urgent need for the development of novel drugs to effectively treat this condition. The novel compound TPB15, an SMO inhibitor derived from [1,2,4] triazolo [4,3-α] pyridines, demonstrated superior anti-TNBC activity and lower toxicity compared to the first SMO inhibitor vismodegib in both in vitro and in vivo. However, the compound's pharmacokinetic properties remain unclear. The present work aims to develop a simple HPLC-MS/MS method to profile the pharmacokinetics and bioavailability of TPB15 in rats as a ground work for further clinical research.</p><p><strong>Methods: </strong>Separation was performed on an Agilent ZORBAX StableBond C18 column by gradient elution using acetonitrile and 0.1% formic acid as mobile phase at a flow rate of 0.3 mL/min. Multiple reaction monitoring(MRM) in positive mode with the transitions of m/z 454.2 → 100.0, 248.1 → 121.1 was employed to determine TPB15 and internal standard tinidazole, respectively. The specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover of the method was validated. The pharmacokinetics and bioavailability study of TPB15 were carried out on rats through intravenous injection at the dose of 5 mg/kg and oral gavage at the dose of 25 mg/kg, and the pharmacokinetics parameters were calculated by the non-compartment analysis using the pharmacokinetics software DAS 2.1.1.</p><p><strong>Results: </strong>The values of specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover satisfied the acceptable limits. The lower limit of quantification of this method was 10 ng/mL with a linear range of 10-2000 ng/mL. The validated method was then applied to pharmacokinetics and bioavailability studies in rat by dosing with gavage (25 mg/kg) and intravenous injection(5 mg/kg), and the oral bioavailability of TBP15 in rat was calculated as 16.4 ± 3.5%. The pharmacokinetic parameters were calculated as following: maximum of plasma concentration (C<sub>max</sub>) (PO: 2787.17 ± 279.45 µg/L), Time to maximum plasma concentration (T<sub>max</sub>) (PO: 4.20 ± 0.90 h), the area under the concentration-time curve 0 to time (AUC<sub>0-t</sub>) (PO: 17,373.03 ± 2585.18 ng/mL·h, IV: 21,129.79 ± 3360.84 ng/mL·h), the area under the concentration-time curve 0 to infinity (AUC<sub>0-∞</sub>) (PO: 17,443.85 ± 2597.63 ng/mL·h, IV: 17,443.85 ± 2597.63 ng/mL·h), terminal elimination half-life (t<sub>1/2</sub>) (PO: 7.26 ± 2.16 h, IV: 4.78 ± 1.09 h).</p><p><strong>Conclusions: </strong>TPB15, a promising candidate for treating TNBC, has demonstrated outstanding efficacy and safety in vitro and in vivo. This study established a simple, sensitive, and rapid HPLC-MS/MS bioanalytical method, developed and validated in accordance with FDA and EMA guidelines, for conducting pharmacokinetic and bioavailability studies of TPB15. The results revealed a favorable pharmacokinetic profile owing to its long t<sub>1/2</sub>. Nevertheless, the next phase of research should include formulation screening to enhance bioavailability, as well as clinical trials, metabolism pathway analysis, and assessment of potential drug-drug interactions.</p>\",\"PeriodicalId\":11939,\"journal\":{\"name\":\"European Journal of Drug Metabolism and Pharmacokinetics\",\"volume\":\" \",\"pages\":\"645-655\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Drug Metabolism and Pharmacokinetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13318-024-00911-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13318-024-00911-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Pharmacokinetics and Bioavailability Study of a Novel Smoothened Inhibitor TPB15 for Treatment of Triple-Negative Breast Cancer in Rats by High Performance Liquid Chromatography-Mass Spectrometry.
Background and objectives: Smoothened (SMO), a key component of the hedgehog signaling pathway, represents a therapeutic target for triple negative breast cancer (TNBC), yet the chemotherapy response rate in TNBC patients is only 40-50%, underscoring the urgent need for the development of novel drugs to effectively treat this condition. The novel compound TPB15, an SMO inhibitor derived from [1,2,4] triazolo [4,3-α] pyridines, demonstrated superior anti-TNBC activity and lower toxicity compared to the first SMO inhibitor vismodegib in both in vitro and in vivo. However, the compound's pharmacokinetic properties remain unclear. The present work aims to develop a simple HPLC-MS/MS method to profile the pharmacokinetics and bioavailability of TPB15 in rats as a ground work for further clinical research.
Methods: Separation was performed on an Agilent ZORBAX StableBond C18 column by gradient elution using acetonitrile and 0.1% formic acid as mobile phase at a flow rate of 0.3 mL/min. Multiple reaction monitoring(MRM) in positive mode with the transitions of m/z 454.2 → 100.0, 248.1 → 121.1 was employed to determine TPB15 and internal standard tinidazole, respectively. The specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover of the method was validated. The pharmacokinetics and bioavailability study of TPB15 were carried out on rats through intravenous injection at the dose of 5 mg/kg and oral gavage at the dose of 25 mg/kg, and the pharmacokinetics parameters were calculated by the non-compartment analysis using the pharmacokinetics software DAS 2.1.1.
Results: The values of specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover satisfied the acceptable limits. The lower limit of quantification of this method was 10 ng/mL with a linear range of 10-2000 ng/mL. The validated method was then applied to pharmacokinetics and bioavailability studies in rat by dosing with gavage (25 mg/kg) and intravenous injection(5 mg/kg), and the oral bioavailability of TBP15 in rat was calculated as 16.4 ± 3.5%. The pharmacokinetic parameters were calculated as following: maximum of plasma concentration (Cmax) (PO: 2787.17 ± 279.45 µg/L), Time to maximum plasma concentration (Tmax) (PO: 4.20 ± 0.90 h), the area under the concentration-time curve 0 to time (AUC0-t) (PO: 17,373.03 ± 2585.18 ng/mL·h, IV: 21,129.79 ± 3360.84 ng/mL·h), the area under the concentration-time curve 0 to infinity (AUC0-∞) (PO: 17,443.85 ± 2597.63 ng/mL·h, IV: 17,443.85 ± 2597.63 ng/mL·h), terminal elimination half-life (t1/2) (PO: 7.26 ± 2.16 h, IV: 4.78 ± 1.09 h).
Conclusions: TPB15, a promising candidate for treating TNBC, has demonstrated outstanding efficacy and safety in vitro and in vivo. This study established a simple, sensitive, and rapid HPLC-MS/MS bioanalytical method, developed and validated in accordance with FDA and EMA guidelines, for conducting pharmacokinetic and bioavailability studies of TPB15. The results revealed a favorable pharmacokinetic profile owing to its long t1/2. Nevertheless, the next phase of research should include formulation screening to enhance bioavailability, as well as clinical trials, metabolism pathway analysis, and assessment of potential drug-drug interactions.
期刊介绍:
Hepatology International is a peer-reviewed journal featuring articles written by clinicians, clinical researchers and basic scientists is dedicated to research and patient care issues in hepatology. This journal focuses mainly on new and emerging diagnostic and treatment options, protocols and molecular and cellular basis of disease pathogenesis, new technologies, in liver and biliary sciences.
Hepatology International publishes original research articles related to clinical care and basic research; review articles; consensus guidelines for diagnosis and treatment; invited editorials, and controversies in contemporary issues. The journal does not publish case reports.