{"title":"Bayesian nonparametric panel Markov-switching GARCH models","authors":"R. Casarin, Mauro Costantini, Anthony Osuntuyi","doi":"10.1080/07350015.2023.2166049","DOIUrl":"https://doi.org/10.1080/07350015.2023.2166049","url":null,"abstract":"Abstract This paper introduces a new model for panel data with Markov-switching GARCH effects. The model incorporates a series-specific hidden Markov chain process that drives the GARCH parameters. To cope with the high-dimensionality of the parameter space, the paper exploits the cross-sectional clustering of the series by first assuming a soft parameter pooling through a hierarchical prior distribution with two-step procedure, and then introducing clustering effects in the parameter space through a nonparametric prior distribution. The model and the proposed inference are evaluated through a simulation experiment. The results suggest that the inference is able to recover the true value of the parameters and the number of groups in each regime. An empirical application to 78 assets of the SP&100 index from 6 January 2000 to 3 October 2020 is also carried out by using a two-regime Markov switching GARCH model. The findings shows the presence of 2 and 3 clusters among the constituents in the first and second regime, respectively.","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126211323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification of a triangular two equation system without instruments","authors":"Arthur Lewbel, Susanne M. Schennach, Linqi Zhang","doi":"10.47004/10.47004/wp.cem.2020.4120","DOIUrl":"https://doi.org/10.47004/10.47004/wp.cem.2020.4120","url":null,"abstract":"We show that a standard linear triangular two equation system can be point identified, without the use of instruments or any other side information. We find that the only case where the model is not point identified is when a latent variable that causes endogeneity is normally distributed. In this non-identified case, we derive the sharp identified set. We apply our results to Acemoglu and Johnson’s (2007) model of life expectancy and GDP, obtaining point identification and comparable estimates to theirs, without using their (or any other) instrument.","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114112371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimation of a Structural Break Point in Linear Regression Models","authors":"Y. Baek","doi":"10.1080/07350015.2022.2154777","DOIUrl":"https://doi.org/10.1080/07350015.2022.2154777","url":null,"abstract":"This paper proposes a point estimator of the break location for a one-time structural break in linear regression models. If the break magnitude is small, the least-squares estimator of the break date has two modes at ends of the finite sample period, regardless of the true break location. I suggest a modification of the least-squares objective function to solve this problem. The modified objective function incorporates estimation uncertainty that varies across potential break dates. The new break point estimator is consistent and has a unimodal finite sample distribution under a small break magnitude. A limit distribution is provided under a in-fill asymptotic framework which verifies that the new estimator outperforms the least-squares estimator.","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114688986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simple Inference on Functionals of Set-Identified Parameters Defined by Linear Moments","authors":"JoonHwan Cho, Thomas M. Russell","doi":"10.1080/07350015.2023.2203768","DOIUrl":"https://doi.org/10.1080/07350015.2023.2203768","url":null,"abstract":"This paper considers uniformly valid (over a class of data generating processes) inference for linear functionals of partially identified parameters in cases where the identified set is defined by linear (in the parameter) moment inequalities. We propose a bootstrap procedure for constructing uniformly valid confidence sets for a linear functional of a partially identified parameter. The proposed method amounts to bootstrapping the value functions of a linear optimization problem, and subsumes subvector inference as a special case. In other words, this paper shows the conditions under which ``naively'' bootstrapping a linear program can be used to construct a confidence set with uniform correct coverage for a partially identified linear functional. Unlike other proposed subvector inference procedures, our procedure does not require the researcher to repeatedly invert a hypothesis test, and is extremely computationally efficient. In addition to the new procedure, the paper also discusses connections between the literature on optimization and the literature on subvector inference in partially identified models.","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114561071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}