线性矩定义集识别参数泛函的简单推断

JoonHwan Cho, Thomas M. Russell
{"title":"线性矩定义集识别参数泛函的简单推断","authors":"JoonHwan Cho, Thomas M. Russell","doi":"10.1080/07350015.2023.2203768","DOIUrl":null,"url":null,"abstract":"This paper considers uniformly valid (over a class of data generating processes) inference for linear functionals of partially identified parameters in cases where the identified set is defined by linear (in the parameter) moment inequalities. We propose a bootstrap procedure for constructing uniformly valid confidence sets for a linear functional of a partially identified parameter. The proposed method amounts to bootstrapping the value functions of a linear optimization problem, and subsumes subvector inference as a special case. In other words, this paper shows the conditions under which ``naively'' bootstrapping a linear program can be used to construct a confidence set with uniform correct coverage for a partially identified linear functional. Unlike other proposed subvector inference procedures, our procedure does not require the researcher to repeatedly invert a hypothesis test, and is extremely computationally efficient. In addition to the new procedure, the paper also discusses connections between the literature on optimization and the literature on subvector inference in partially identified models.","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Simple Inference on Functionals of Set-Identified Parameters Defined by Linear Moments\",\"authors\":\"JoonHwan Cho, Thomas M. Russell\",\"doi\":\"10.1080/07350015.2023.2203768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers uniformly valid (over a class of data generating processes) inference for linear functionals of partially identified parameters in cases where the identified set is defined by linear (in the parameter) moment inequalities. We propose a bootstrap procedure for constructing uniformly valid confidence sets for a linear functional of a partially identified parameter. The proposed method amounts to bootstrapping the value functions of a linear optimization problem, and subsumes subvector inference as a special case. In other words, this paper shows the conditions under which ``naively'' bootstrapping a linear program can be used to construct a confidence set with uniform correct coverage for a partially identified linear functional. Unlike other proposed subvector inference procedures, our procedure does not require the researcher to repeatedly invert a hypothesis test, and is extremely computationally efficient. In addition to the new procedure, the paper also discusses connections between the literature on optimization and the literature on subvector inference in partially identified models.\",\"PeriodicalId\":118766,\"journal\":{\"name\":\"Journal of Business & Economic Statistics\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business & Economic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2023.2203768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07350015.2023.2203768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文考虑了部分辨识参数的线性泛函在辨识集由线性(在参数中)矩不等式定义的情况下的一致有效推理。提出了一种构造部分辨识参数线性泛函一致有效置信集的自举方法。提出的方法相当于自举线性优化问题的值函数,并将子向量推理作为一种特殊情况。换句话说,本文给出了对部分辨识的线性泛函,“天真地”自举线性规划可以构造一致正确覆盖的置信集的条件。与其他提出的子向量推理程序不同,我们的程序不需要研究人员反复反转假设检验,并且计算效率极高。除了新的过程外,本文还讨论了部分识别模型中优化文献与子向量推理文献之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple Inference on Functionals of Set-Identified Parameters Defined by Linear Moments
This paper considers uniformly valid (over a class of data generating processes) inference for linear functionals of partially identified parameters in cases where the identified set is defined by linear (in the parameter) moment inequalities. We propose a bootstrap procedure for constructing uniformly valid confidence sets for a linear functional of a partially identified parameter. The proposed method amounts to bootstrapping the value functions of a linear optimization problem, and subsumes subvector inference as a special case. In other words, this paper shows the conditions under which ``naively'' bootstrapping a linear program can be used to construct a confidence set with uniform correct coverage for a partially identified linear functional. Unlike other proposed subvector inference procedures, our procedure does not require the researcher to repeatedly invert a hypothesis test, and is extremely computationally efficient. In addition to the new procedure, the paper also discusses connections between the literature on optimization and the literature on subvector inference in partially identified models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信