Estimation of a Structural Break Point in Linear Regression Models

Y. Baek
{"title":"Estimation of a Structural Break Point in Linear Regression Models","authors":"Y. Baek","doi":"10.1080/07350015.2022.2154777","DOIUrl":null,"url":null,"abstract":"This paper proposes a point estimator of the break location for a one-time structural break in linear regression models. If the break magnitude is small, the least-squares estimator of the break date has two modes at ends of the finite sample period, regardless of the true break location. I suggest a modification of the least-squares objective function to solve this problem. The modified objective function incorporates estimation uncertainty that varies across potential break dates. The new break point estimator is consistent and has a unimodal finite sample distribution under a small break magnitude. A limit distribution is provided under a in-fill asymptotic framework which verifies that the new estimator outperforms the least-squares estimator.","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2154777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a point estimator of the break location for a one-time structural break in linear regression models. If the break magnitude is small, the least-squares estimator of the break date has two modes at ends of the finite sample period, regardless of the true break location. I suggest a modification of the least-squares objective function to solve this problem. The modified objective function incorporates estimation uncertainty that varies across potential break dates. The new break point estimator is consistent and has a unimodal finite sample distribution under a small break magnitude. A limit distribution is provided under a in-fill asymptotic framework which verifies that the new estimator outperforms the least-squares estimator.
线性回归模型结构断点的估计
本文提出了线性回归模型中一次性结构断裂断裂位置的点估计。如果断裂幅度很小,那么无论真正的断裂位置如何,断裂日期的最小二乘估计量在有限样本周期的末端都有两个模态。我建议对最小二乘目标函数进行修改来解决这个问题。修改后的目标函数包含了在潜在中断日期之间变化的估计不确定性。新的断点估计量是一致的,并且在小的断点幅度下具有单峰有限样本分布。给出了在填充渐近框架下的极限分布,验证了新估计量优于最小二乘估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信