D. González-Quevedo, D. Sánchez-Porras, Ó. García-García, J. Chato-Astrain, M. Díaz-Ramos, A. Campos, V. Carriel, F. Campos
{"title":"Nanostructured fibrin-based hydrogel membranes for use as an augmentation strategy in Achilles tendon surgical repair in rats.","authors":"D. González-Quevedo, D. Sánchez-Porras, Ó. García-García, J. Chato-Astrain, M. Díaz-Ramos, A. Campos, V. Carriel, F. Campos","doi":"10.22203/eCM.v043a13","DOIUrl":"https://doi.org/10.22203/eCM.v043a13","url":null,"abstract":"Hydrogels are polymeric biomaterials characterised by their promising biological and biomechanical properties, which make them potential alternatives for use in tendon repair. The aim of the present study was to generate in vitro, and determine the therapeutic efficacy in vivo, of novel nanostructured fibrin-based hydrogels to be used as an augmentation strategy for the surgical repair of rat Achilles tendon injuries. Fibrin, fibrin-agarose and fibrin-collagen nanostructured hydrogels (NFH, NFAH and NFCH, respectively) were generated and their biomechanical properties and cell-biomaterial interactions characterised ex vivo. Achilles tendon ruptures were created in 24 adult Wistar rats, which were next treated with direct repair (control group) or direct repair augmented with the generated biomaterials (6 rats/group). After 4 and 8 weeks, the animals were euthanised for macroscopical and histological analyses. Biomechanical characterisation showed optimal properties of the biomaterials for use in tendon repair. Moreover, biological analyses confirmed that tendon-derived fibroblasts were able to adhere to the surface of the generated biomaterials, with high levels of viability and functionality. In vivo studies demonstrated successful tendon repair in all groups. Lastly, histological analyses disclosed better tissue and extracellular matrix organisation and alignment with biomaterial-based augmentation strategies than direct repair, especially when NFAH and NFCH were used. The present study demonstrated that nanostructured fibrin-collagen hydrogels can be used to enhance the healing process in the surgical repair of tendon ruptures.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"26 8","pages":"162-178"},"PeriodicalIF":3.1,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41258946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Nagelli, A. Hooke, N. Quirk, C. L. de Padilla, T. Hewett, M. van Griensven, M. Coenen, L. Berglund, C. Evans, S. Müller
{"title":"MECHANICAL AND STRAIN BEHAVIOUR OF HUMAN ACHILLES TENDON DURING IN VITRO TESTING TO FAILURE","authors":"C. Nagelli, A. Hooke, N. Quirk, C. L. de Padilla, T. Hewett, M. van Griensven, M. Coenen, L. Berglund, C. Evans, S. Müller","doi":"10.22203/eCM.v043a12","DOIUrl":"https://doi.org/10.22203/eCM.v043a12","url":null,"abstract":"The Achilles tendon is the strongest tendon in the human body but its mechanical behaviour during failure has been little studied and the basis of its high tensile strength has not been elucidated in detail. In the present study, healthy, human, Achilles tendons were loaded to failure in an anatomically authentic fashion while the local deformation and strains were studied in real time, with very high precision, using digital image correlation (DIC). The values determined for the strength of the Achilles tendon were at the high end of those reported in the literature, consistent with the absence of a pre-existing tendinopathy in the samples, as determined by careful gross inspection and histology. Early in the loading cycle, the proximal region of the tendon accumulated high lateral strains while longitudinal strains remained low. However, immediately before rupture, the mid-substance of the Achilles tendon, its weakest part, started to show high longitudinal strains. These new insights advance the understanding of the mechanical behaviour of tendons as they are stretched to failure.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"43 1","pages":"153 - 161"},"PeriodicalIF":3.1,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44302132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"REGULATORS OF COLLAGEN CROSSLINKING IN DEVELOPING AND ADULT TENDONS","authors":"A.J. Ellingson, N. M. Pancheri, N. Schiele","doi":"10.22203/eCM.v043a11","DOIUrl":"https://doi.org/10.22203/eCM.v043a11","url":null,"abstract":"Tendons are collagen-rich musculoskeletal tissues that possess the mechanical strength needed to transfer forces between muscles and bones. The mechanical development and function of tendons are impacted by collagen crosslinks. However, there is a limited understanding of how collagen crosslinking is regulated in tendon during development and aging. Therefore, the objective of the present review was to highlight potential regulators of enzymatic and non-enzymatic collagen crosslinking and how they impact tendon function. The main collagen crosslinking enzymes include lysyl oxidase (LOX) and the lysyl oxidase-like isoforms (LOXL), whereas non-enzymatic crosslinking is mainly mediated by the formation of advanced glycation end products (AGEs). Regulators of the LOX and LOXL enzymes may include mechanical stimuli, mechanotransducive cell signaling pathways, sex hormones, transforming growth factor (TGF)β family, hypoxia, and interactions with intracellular or extracellular proteins. AGE accumulation in tendon is due to diabetic conditions and aging, and can be mediated by diet and mechanical stimuli. The formation of these enzymatic and non-enzymatic collagen crosslinks plays a major role in tendon biomechanics and in the mechanisms of force transfer. A more complete understanding of how enzymatic and non-enzymatic collagen crosslinking is regulated in tendon will better inform tissue engineering and regenerative therapies aimed at restoring the mechanical function of damaged tendons.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"43 1","pages":"130 - 152"},"PeriodicalIF":3.1,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43904079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J Luzuriaga, P García-Gallastegui, N García-Urkia, J R Pineda, I Irastorza, F-J Fernandez-San-Argimiro, N Briz, B Olalde, F Unda, I Madarieta, G Ibarretxe
{"title":"Osteogenic differentiation of human dental pulp stem cells in decellularised adipose tissue solid foams.","authors":"J Luzuriaga, P García-Gallastegui, N García-Urkia, J R Pineda, I Irastorza, F-J Fernandez-San-Argimiro, N Briz, B Olalde, F Unda, I Madarieta, G Ibarretxe","doi":"10.22203/eCM.v043a10","DOIUrl":"https://doi.org/10.22203/eCM.v043a10","url":null,"abstract":"<p><p>3D cell culture systems based on biological scaffold materials obtainable from both animal and human tissues constitute very interesting tools for cell therapy and personalised medicine applications. The white adipose tissue (AT) extracellular matrix (ECM) is a very promising biomaterial for tissue engineering due to its easy accessibility, malleability and proven biological activity. In the present study, human dental pulp stem cells (hDPSCs) were combined in vitro with ECM scaffolds from porcine and human decellularised adipose tissues (pDAT, hDAT) processed as 3D solid foams, to investigate their effects on the osteogenic differentiation capacity and bone matrix production of hDPSCs, compared to single-protein-based 3D solid foams of collagen type I and conventional 2D tissue-culture-treated polystyrene plates. pDAT solid foams supported the osteogenic differentiation of hDPSCs to similar levels to collagen type I, as assessed by alkaline phosphatase and alizarin red stainings, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and osteocalcin/bone gamma-carboxyglutamate protein (BGLAP) immunostaining. Interestingly, hDAT solid foams showed a markedly lower capacity to sustain hDPSC osteogenic differentiation and matrix calcification and a higher capacity to support adipogenesis, as assessed by RT-qPCR and oil red O staining. White ATs from both human and porcine origins are relatively abundant and available sources of raw material to obtain high quality ECM-derived biomedical products. These biomaterials could have promising applications in tissue engineering and personalised clinical therapy for the healing and regeneration of lesions involving not only a loss of calcified bone but also its associated soft non-calcified tissues.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":" ","pages":"112-129"},"PeriodicalIF":3.1,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40309532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Ossendorff, S. Walter, F. Schildberg, M. Khoury, G. Salzmann
{"title":"Controversies in regenerative medicine: should knee joint osteoarthritis be treated with mesenchymal stromal cells?","authors":"R. Ossendorff, S. Walter, F. Schildberg, M. Khoury, G. Salzmann","doi":"10.22203/eCM.v043a09","DOIUrl":"https://doi.org/10.22203/eCM.v043a09","url":null,"abstract":"Knee joint osteoarthritis is a complex immunological and degenerative disease. Current treatment strategies fail to alter its progression. Mesenchymal stromal cell (MSC) therapy for osteoarthritis has been object of research for more than 30 years. The aim of MSC therapy is intended to be holistic, with regeneration of all affected knee joint structures. The paracrine effect of the MSC secretome has been shown to be central for the regenerative capacity of MSCs. Activation of local knee-joint-specific MSCs leads to an immunomodulatory, anti-catabolic, anti-apoptotic and chondrogenic stimulus. Preclinical models have demonstrated the symptom- and disease-modifying effects of MSC therapy. At the bedside, there is evidence that autologous and allogeneic MSC therapy shows significant improvement in symptom-modifying and functional outcome. Despite this, a variety of contradictory clinical outcomes are available in the literature. The effectiveness of MSC therapy is still unclear, although there have been promising results. Regarding the diversity of cell sources, isolation, culture protocols and other factors, a comparison of different studies is difficult. Clinical translation of disease-modifying effects has not yet been shown. This narrative review presents a controversial overview of the current preclinical and clinical studies on MSC therapy in knee joint osteoarthritis.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"43 1","pages":"98-111"},"PeriodicalIF":3.1,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48509714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Kostešić, A. Vukasović Barišić, I. Erjavec, M. Pušić, D. Hudetz, D. Matičić, D. Vnuk, M. Vučković, A. Ivković
{"title":"Characterisation of subchondral bone repair following transplantation of bioreactor-manufactured autologous osteochondral graft in a sheep model.","authors":"P. Kostešić, A. Vukasović Barišić, I. Erjavec, M. Pušić, D. Hudetz, D. Matičić, D. Vnuk, M. Vučković, A. Ivković","doi":"10.22203/eCM.v043a08","DOIUrl":"https://doi.org/10.22203/eCM.v043a08","url":null,"abstract":"To date, no single approach to the treatment of osteochondral defects has resulted in satisfactory long-term outcomes, especially in a young and active human population. Emerging innovative tissue engineering strategies, including the use of composite scaffolds, novel cell sources and bioreactors, have shown promising results. However, these techniques need to be validated in translational animal models before they can be implemented in clinical practice. The aim of the present study was to analyse morphological and microarchitectural parameters during subchondral bone repair following transplantation of bioreactor-manufactured autologous osteochondral grafts in a sheep model. Animals were divided into 4 treatment groups: nasal chondrocyte (NC) autologous osteochondral grafts, articular chondrocyte (AC) autologous osteochondral grafts, cell-free scaffolds (CFS) and empty defects (EDs). After 6 weeks, 3 months and 12 months, bone remodelling was assessed by histology and micro-computed tomography (µCT). Although gradual remodelling and subchondral bone repair were seen in all groups across the time points, the best results were observed in the NC group. This was evidenced by the extent of new tissue formation and its best integration into the surrounding tissue in the NC group at all time points. This also suggested that nasal septum chondrocyte-seeded grafts adapted well to the biomechanical conditions of the loaded joint surface.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"43 1","pages":"79-97"},"PeriodicalIF":3.1,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45200985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G K Mannala, M Rupp, N Walter, M Brunotte, F Alagboso, D Docheva, C Brochhausen, V Alt
{"title":"Microbiological and ultrastructural evaluation of bacteriophage 191219 against planktonic, intracellular and biofilm infection with Staphylococcus aureus.","authors":"G K Mannala, M Rupp, N Walter, M Brunotte, F Alagboso, D Docheva, C Brochhausen, V Alt","doi":"10.22203/eCM.v043a07","DOIUrl":"https://doi.org/10.22203/eCM.v043a07","url":null,"abstract":"<p><p>Infections of orthopaedic implants, such as fracture fixation devices and total-joint prostheses, are devastating complications. Staphylococcus aureus (S. aureus) is a predominant pathogen causing orthopaedic-implant biofilm infections that can also internalise and persist in osteoblasts, thus resisting antibiotic therapy. Bacteriophages are a promising alternative treatment approach. However, data on the activity of bacteriophages against S. aureus, especially during intracellular growth, and against in vivo biofilm formation on metals are scarce. Therefore, the present study evaluated the in vitro efficacy of S. aureus bacteriophage 191219, alone as well as in combination with gentamicin and rifampicin, to eradicate S. aureus strains in their planktonic stage, during biofilm formation and after internalisation into osteoblasts. Further, the invertebrate model organism Galleria mellonella was used to assess the activity of the bacteriophage against S. aureus biofilm on metal implants with and without antibiotics. Results demonstrated the in vitro efficacy of bacteriophage 191219 against planktonic S. aureus. The phage was also effective against in vitro S. aureus biofilm formation in a dose-dependent manner and against S. aureus internalised in an osteoblastic cell line. Transmission electron microscopy (TEM) analysis showed bacteriophages on S. aureus inside the osteoblasts, with the destruction of the intracellular bacteria and formation of new bacteriophages. For the Galleria mellonella infection model, single administration of phage 191219 failed to show an improvement in survival rate but appeared to show a not statistically significant enhanced effect with gentamicin or rifampicin. In summary, bacteriophages could be a potential adjuvant treatment strategy for patients with implant-associated biofilm infections.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":" ","pages":"66-78"},"PeriodicalIF":3.1,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39951024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monocarboxylate transporter 1-mediated lactate accumulation promotes nucleus pulposus degeneration under hypoxia in a 3D multilayered nucleus pulposus degeneration model.","authors":"C Y Wang, M K Hsieh, Y J Hu, A Bit, P L Lai","doi":"10.22203/eCM.v043a06","DOIUrl":"https://doi.org/10.22203/eCM.v043a06","url":null,"abstract":"<p><p>During intervertebral disc degeneration (IVDD), due to endplate calcification, diminished oxygen and nutrient concentrations and accumulated lactate are present in the microenvironment of the nucleus pulposus (NP). The disadvantages of 3D layered culture include uneven oxygen and nutrient gradients. In the present study, to mimic the in vivo microenvironment of the NP, a 5-layered 3D culture was constructed using clinical haemostatic gelatine sponges and developed as a NP degeneration (NPD) model. Subsequently, cell distribution as well as expression of NP chondrogenic markers (type II collagen and aggrecan), glycosaminoglycan (GAG) and degeneration markers [e.g. matrix metalloproteinase (MMP) 3] were measured from the top to the bottom layer. However, in a single NP-cell-loaded disc model, the chondrogenic potency in the middle or bottom layer was higher than that in the top layer. To further study the mechanism underlying the degeneration of NP cells in this NPD model, the contribution of secreted metabolites was examined. Lactate identified in the supernatant modulated GAG accumulation and MMP3 expression. Inhibition of lactate influx by the monocarboxylate transporter (MCT)-1 inhibitor, AZD3965, reversed the effect of lactate on GAG accumulation and MMP3 expression and further improved NP cell degeneration in the NPD model. Thanks to the homogenous expression of lactate in the model, it was possible to further identified that the combination of lactate and hypoxia enhanced MMP3 expression. Taken together, multilayered cell-loaded sponges, with oxygen and nutrient gradients as well as lactate accumulation, can represent a 3D multilayered NPD model for exploring potential agents for IVDD.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":" ","pages":"53-65"},"PeriodicalIF":3.1,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39816208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Innate and adaptive immune system cells implicated in tendon healing and disease.","authors":"G Crosio, A H Huang","doi":"10.22203/eCM.v043a05","DOIUrl":"10.22203/eCM.v043a05","url":null,"abstract":"<p><p>Tendons perform a critical function in the musculoskeletal system by integrating muscle with skeleton and enabling force transmission. Damage or degeneration of these tissues lead to impaired structure and function, which often persist despite surgical intervention. While the immune response and inflammation are important drivers of both tendon healing and disease progression, there have been relatively few studies of the diverse immune cell types that may regulate these processes in these tissues. To date, most of the studies have focused on macrophages, but emerging research indicate that other immune cell types may also play a role in tendon healing, either by regulating the immune environment or through direct interactions with resident tenocytes. The present review synthesises the literature on innate and adaptive immune system cells that have been implicated in tendon healing or disease, in the context of animal injury models, human clinical samples or in vitro experiments.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"43 ","pages":"39-52"},"PeriodicalIF":3.2,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526522/pdf/nihms-1835265.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10743335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomechanics of the anterior cruciate ligament under simulated molecular degradation.","authors":"M Adouni, A Gouissem, F Al Khatib, A Eilaghi","doi":"10.22203/eCM.v043a04","DOIUrl":"https://doi.org/10.22203/eCM.v043a04","url":null,"abstract":"<p><p>Injuries to the knee anterior cruciate ligament (ACL) are common, with a known but poorly understood association with intrinsic and extrinsic risk factors. Some of these factors are enzymatically or mechanically mediated, creating acute focal injuries that may cause significant ligament damage. Understanding the relationship between the basic molecular structure and external loading of the ACL requires a hierarchical connection between the two levels. In the present study, a multi-domain frame was developed connecting the molecular dynamics of the collagen networks to the continuum mechanics of the ACL. The model was used to elucidate the effect of the two possible collagen degradation mechanisms on the aggregate ACL behaviour. Results indicated that collagen content and ACL stiffness were reduced significantly, regardless of the degradation mechanism. Furthermore, the volumetric degradation at the molecular level had a devastating effect on the mechanical behaviour of the ACL when it was compared with the superficial degradation. ACL damage initiation and propagation were clearly influenced by collagen degradation. To summarise, the new insights provided by the predicted results revealed the significance of the collagen network structural integrity to the aggregate mechanical response of the ACL and, hence, underlined the biomechanical factors that may help develop an engineering-based approach towards improving the therapeutic intervention for ACL pathologies.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":" ","pages":"22-38"},"PeriodicalIF":3.1,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39925031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}