M EzEldeen, J Loos, Z Mousavi Nejad, M Cristaldi, D Murgia, A Braem, R Jacobs
{"title":"3D-printing-assisted fabrication of chitosan scaffolds from different sources and cross-linkers for dental tissue engineering.","authors":"M EzEldeen, J Loos, Z Mousavi Nejad, M Cristaldi, D Murgia, A Braem, R Jacobs","doi":"10.22203/eCM.v041a31","DOIUrl":"https://doi.org/10.22203/eCM.v041a31","url":null,"abstract":"<p><p>The aim of the present study was to fabricate and characterise chitosan scaffolds from animal and fungal sources, with or without gelatine as a co-polymer, and cross-linked to 3-glycidyloxyproply trimethoxysilane (GPTMS) or genipin for application in dental root tissue engineering.\u0000Chitosan-based scaffolds were prepared by the emulsion freeze-drying technique. Scanning electron microscopy (SEM) and nano-focus computed tomography (nano-CT) were used to characterise scaffold microstructure. Chemical composition and cross-linking were evaluated by Fourier transform infrared-attenuated total reflectance spectroscopy. Compression tests were performed to evaluate scaffold mechanical properties. Scaffold degradation was evaluated by gravimetric method and SEM. Scaffold bioactivity immersed in simulated body fluid was evaluated by SEM, with associated electron dispersive X-ray spectroscopy, and apatite formation was examined by X-ray diffraction. Finally, human dental pulp stem cells (hDPSCs) viability was evaluated.\u0000The fabrication method used was successful in producing scaffolds with organised porosity. Chitosan source (animal vs. fungal), co-polymerisation with gelatine and cross-linking using GPTMS or genipin had a significant effect on scaffold properties and hDPSCs response. Chitosan-genipin (CS-GEN) scaffolds had the largest pore diameter, while the chitosan-gelatine-GPTMS (CS-GEL-GPTMS) scaffolds had the smallest. Animal chitosan-gelatine co-polymerisation increased scaffold compressive strength, while fungal chitosan scaffolds (fCS-GEL-GPTMS) had the fastest degradation rate, losing 80 % of their weight by day 21. Gelatine co-polymerisation and GPTMS cross-linking enhanced chitosan scaffolds bioactivity through the formation of an apatite layer as well as improved hDPSCs attachment and viability.\u0000Tailored chitosan scaffolds with tuned properties and favourable hDPSCs response can be obtained for regenerative dentistry applications.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":" ","pages":"485-501"},"PeriodicalIF":3.1,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38949041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chitosan-based hydrogels supplemented with gelatine and Link N enhance extracellular matrix deposition by encapsulated cells in a degenerative intervertebral disc environment.","authors":"A Adoungotchodo, L M Epure, F Mwale, S Lerouge","doi":"10.22203/eCM.v041a30","DOIUrl":"https://doi.org/10.22203/eCM.v041a30","url":null,"abstract":"<p><p>Injectable therapies for intervertebral disc (IVD) repair are gaining much interest. Recently, a chitosan (CH)-based injectable scaffold has been developed that has similar mechanical properties to human nucleus pulposus (NP) and provides a suitable environment for encapsulated NP cell survival and proteoglycan production. The hypothesis of the study was that the biological response of the encapsulated cells can be further increased by adding gelatine and Link N (LN, a naturally occurring peptide present in cartilage and IVD extracellular matrix), known to increase cell adhesion and proteoglycan production, respectively. The effect of gelatine on the mechanical properties of a CH hydrogel was evaluated through rheological and compressive mechanical tests. Production of proteoglycan [assessed as glycosaminoglycan (GAG)] by encapsulated NP cells was determined in the presence or absence of gelatine in normal or degenerative medium supplemented with LN. Normal and degenerative media replicate the healthy and degenerative disc environment, respectively. Gelatine slightly reduced the gelation rate of CH hydrogel but improved its final mechanical properties in compression. LN had a minimal effect in normal medium but induced significantly more GAG production in degenerative medium (p < 0.001, 4.7-fold superior to the control), reaching similar results to transforming growth factor (TGF)-β (used as a positive control). GAG production was further increased in CH-gelatine hydrogels, confirming an additive effect of LN and gelatine in a degenerative environment. The results supported the concept that CH-gelatine hydrogels supplemented with LN can help restore the function of the NP during the early stages of IVD degeneration.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":" ","pages":"471-484"},"PeriodicalIF":3.1,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38947489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Wallimann, W Magrath, K Thompson, T Moriarty, R G Richards, C A Akdis, L O'Mahony, C J Hernandez
{"title":"Gut microbial-derived short-chain fatty acids and bone: a potential role in fracture healing.","authors":"A Wallimann, W Magrath, K Thompson, T Moriarty, R G Richards, C A Akdis, L O'Mahony, C J Hernandez","doi":"10.22203/eCM.v041a29","DOIUrl":"https://doi.org/10.22203/eCM.v041a29","url":null,"abstract":"<p><p>Bone healing complications such as delayed healing or non-union affect 5-10 % of patients with a long-bone fracture and lead to reduced quality of life and increased health-care costs. The gut microbiota and the metabolites they produce, mainly short-chain fatty acids (SCFAs), have been shown to impact nearly all organs of the human body including bone. SCFAs show broad activity in positively influencing bone healing outcomes either by acting directly on cell types involved in fracture healing, such as osteoblasts, osteoclasts, chondrocytes and fibroblasts, or indirectly, by shaping an appropriate anti-inflammatory and immune regulatory response. Due to the ability of SCFAs to influence osteoblast and osteoclast differentiation, SCFAs may also affect the integration of orthopaedic implants in bone. In addition, SCFA-derivatives have already been used in a variety of tissue engineering constructs to reduce inflammation and induce bone tissue production. The present review summarises the current knowledge on the role of the gut microbiota, in particular through the action of SCFAs, in the individual stages of bone healing and provides insights into how SCFAs may be utilised in a manner beneficial for fracture healing and surgical reconstruction.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":" ","pages":"454-470"},"PeriodicalIF":3.1,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100835/pdf/nihms-1798324.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38894415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J R Ferreira, G Q Teixeira, E Neto, C Ribeiro-Machado, A M Silva, J Caldeira, C Leite Pereira, S Bidarra, A F Maia, M Lamghari, M A Barbosa, R M Gonçalves
{"title":"IL-1β-pre-conditioned mesenchymal stem/stromal cells' secretome modulates the inflammatory response and aggrecan deposition in intervertebral disc.","authors":"J R Ferreira, G Q Teixeira, E Neto, C Ribeiro-Machado, A M Silva, J Caldeira, C Leite Pereira, S Bidarra, A F Maia, M Lamghari, M A Barbosa, R M Gonçalves","doi":"10.22203/eCM.v041a28","DOIUrl":"https://doi.org/10.22203/eCM.v041a28","url":null,"abstract":"<p><p>Mesenchymal stem/stromal cells (MSCs) have been increasingly used in clinical trials for low-back pain (LBP) and intervertebral disc (IVD) degeneration with promising results. Their action mechanisms are not fully understood, but they reduce IVD pro-inflammatory markers in a pro-inflammatory/degenerative IVD microenvironment. In this study the therapeutic potential of the MSC secretome, as an alternative cell-free approach for treating degenerated IVDs, was examined. Human bone marrow-derived MSC secretome (MSCsec) was collected after 48 h of preconditioning in IL-1β (10 ng/mL) and low oxygen (6 % O2), mimicking the degenerative IVD. IL-1β-pre-conditioning of MSCs increased secretion of pro-inflammatory markers hIL-6, hIL-8, hMCP-1, etc. The therapeutic effect of MSCsec was tested in a pro-inflammatory/degenerative IVD ex vivo model. MSCsec down-regulated IVD gene expression of pro-inflammatory cytokines (bIL-6, bIL-8) and matrix degrading enzyme bMMP1, while bMMP3 and bTIMP2 were up-regulated, at 48 h. After 14 d, MSCsec-treated IVDs revealed increased aggrecan deposition, although no differences in other ECM components were observed. Protein analysis of the MSCsec-treated IVD supernatant revealed a significant increase of CXCL1, MCP-1, MIP-3α, IL-6, IL-8 and GRO α/β/γ (related to TNF, NOD-like receptor and neutrophil chemotaxis signalling), and a decrease of IFN-γ, IL-10, IL-4, IL-5 and TNF-α (associated with T-cell receptor signalling). MSCsec-treated IVD supernatants did not promote angiogenesis and neurogenesis in vitro. Overall, MSCsec can be a safe therapeutic approach, presenting a strong immunomodulatory role in degenerated IVD while potentiating aggrecan deposition, which can open new perspectives on the use of MSCsec as a cell-based/ cell-free therapeutic approach to LBP.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":" ","pages":"431-453"},"PeriodicalIF":3.1,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38813012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y Yuan, Y Ren, M Dijk, G I Geertsema-Doornbusch, J Atema-Smit, H J Busscher, H C van der Mei
{"title":"Phagocytosis and macrophage polarization on bacterially contaminated dental implant materials and effects on tissue integration.","authors":"Y Yuan, Y Ren, M Dijk, G I Geertsema-Doornbusch, J Atema-Smit, H J Busscher, H C van der Mei","doi":"10.22203/eCM.v041a27","DOIUrl":"https://doi.org/10.22203/eCM.v041a27","url":null,"abstract":"<p><p>Bacterial contamination is hard to avoid during dental implant surgery. Macrophages and their polarisation play a decisive role in bacterial colonisation and tissue integration on bacterially contaminated dental implants. The present study investigated the role of macrophages in stimulating tissue coverage overgrowth of contaminating oral bacteria on polished titanium (Ti-P) and acid-etched zirconium dioxide (ZrO2-MA) dental implant materials. Different co-culture models were employed to determine phagocytosis rates of Streptococcus mitis or Staphylococcus aureus contaminating a dental implant surface and the influence of contaminating bacteria and osteoblasts (U2OS) on macrophage polarisation. S. aureus was phagocytized in higher numbers than S. mitis in bi-cultures on smooth Ti-P surfaces. Contaminating S. mitis stimulated near full polarisation of macrophages from a non-Ym1-expressing- to a Ym1-expressing-phenotype on smooth Ti-P, but on ZrO2-MA both phenotypes occurred. In tri-cultures with U2OS-cells on smooth Ti-P, a larger percentage of macrophages remained in their non-Ym1-expressing, \"fighting\" M1-like phenotype to clear Ti-P surfaces from contaminating bacteria. On ZrO2-MA surfaces, more macrophages tended towards their \"fix- and-repair\" M2-like phenotype than on Ti-P surfaces. Surface coverage of smooth, bacterially contaminated Ti-P surfaces by U2OS-cells was more effectively stimulated by fighting, M1-like macrophages than on ZrO2-MA surfaces. Comprehensive guidelines are provided for the development of infection-resistant, dental implant materials, including bacteria, tissue and immune cells. These guidelines point to more promising results for clinical application of Ti-P as compared with ZrO2-MA.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":" ","pages":"421-430"},"PeriodicalIF":3.1,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25529675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K Joyce, I L Mohd Isa, A Krouwels, L Creemers, A Devitt, A Pandit
{"title":"The role of altered glycosylation in human nucleus pulposus cells in inflammation and degeneration.","authors":"K Joyce, I L Mohd Isa, A Krouwels, L Creemers, A Devitt, A Pandit","doi":"10.22203/eCM.v041a26","DOIUrl":"https://doi.org/10.22203/eCM.v041a26","url":null,"abstract":"Intervertebral disc (IVD) degeneration causes low-back pain through disc compression, prolapse and herniation. Inflammation of the IVD and subsequent degeneration produce altered glycosylation profiles in several animal models of IVD injury and ageing, although the function of this altered glycosylation pattern in a human is unknown. Altered N-glycome, specifically sialylated and fucosylated N-glycosylation motif expression, might play a role in inflammation and disease progression. Healthy (foetal and adolescent idiopathic scoliosis) and degenerated (lumbar degeneration) human IVD glycosylation patterns were studied using lectin histochemistry. Small-molecule fluorinated sugar analogues (3Fax-Peracetyl Neu5Ac; 2F-Peracetyl-Fucose) were used to inhibit sialylation and fucosylation in an in vitro model of inflammation, to investigate their effects on the glycosignature, cell metabolism, extracellular matrix synthesis and cell migration. The effects of interleukin (IL)-1β, tumour necrosis factor (TNF)-α and IL-6 on glycosylation in human nucleus pulposus cells were investigated by lectin histochemistry, PCR and enzyme-linked immunosorbent assay (ELISA). In the in vitro model of IVD degeneration, cytokine-induced inflammation-induced hypersialylation was observed, as indicated by Sambucus nigra I binding. However, this modification was inhibited by the sialyltransferase inhibitor. Inhibition of sialylation and fucosylation modulates cell migration and protein translation of catabolic enzymes in response to inflammation. The altered patterns of glycosylation in human tissue in degeneration was consistent with previous IVD studies in murine, bovine and ovine models. The present study was the first functional investigation of glycosylation in human degenerated IVD, elucidating the role of the glycome in disease progression and identified potential therapeutic targets for future regenerative therapies.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":" ","pages":"401-420"},"PeriodicalIF":3.1,"publicationDate":"2021-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25524881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of multiplanar loading on the intradiscal pressure of the whole human spine: systematic review and meta-analysis.","authors":"C Liebsch, H J Wilke","doi":"10.22203/eCM.v041a25","DOIUrl":"https://doi.org/10.22203/eCM.v041a25","url":null,"abstract":"<p><p>For spinal load and muscle force estimation as well as for numerical model and experimental setup validation, data on human intradiscal pressure are essential. Therefore, the aim of the present meta-analysis was to summarise all in vitro measurements of human intradiscal pressure performed under defined boundary conditions, i.e. without external loading (intrinsic pressure), under axial loading (compression, traction, shear) and under single-planar bending loading (flexion, extension, lateral bending, axial rotation). Data were evaluated based on segmental level and normalised to force and moment. Regression analysis was performed to investigate coefficients of determination and statistical significance of relationships between intradiscal pressure and segmental level for the single loading conditions. 35 studies fulfilled the inclusion criteria, from which a total of 451 data points were collected for the meta-analysis. High coefficients of determination were found in axial compression (r2 = 0.875) and flexion (r2 = 0.781), while being low for intrinsic pressure (r2 = 0.266) and lateral bending (r2 = 0.385), all showing significant regression fitting (p < 0.01). Intradiscal pressure decreases from the upper cervical spine to the sacrum in all loading conditions, considering the same amount of loading for all segmental levels, while the intrinsic pressure exhibits a minimum of the regression curve in the mid-thoracic spine. Apart from its potential for numerical and experimental model validation, this dataset may help to understand the load distribution along the human spine.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":" ","pages":"388-400"},"PeriodicalIF":3.1,"publicationDate":"2021-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25499114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"For whom the disc tolls: intervertebral disc degeneration, back pain and toll-like receptors.","authors":"D G Bisson, M Mannarino, R Racine, L Haglund","doi":"10.22203/eCM.v041a23","DOIUrl":"https://doi.org/10.22203/eCM.v041a23","url":null,"abstract":"<p><p>Intervertebral disc (IVD) degeneration is characterised by catabolic and inflammatory processes that contribute largely to tissue degradation and chronic back pain. The disc cells are responsible for the pathological production of pro-inflammatory cytokines and catabolic enzymes leading to degeneration. However, this phenotypical change is poorly understood. Growing evidence in animal and human studies implicates Toll-like receptors (TLR) and their activation through danger-associated alarmins, found increasingly in degenerating IVDs. TLR signalling results in the release of pro-inflammatory cytokines and proteolytic enzymes that can directly cause IVD degeneration and back pain. This review aims to summarise the current literature on TLR activation in IVD degeneration and discuss potential treatment modalities to alleviate the inflammatory phenotype of disc cells in order to arrest IVD degeneration and back pain.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":" ","pages":"355-369"},"PeriodicalIF":3.1,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25494250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T-Y Liu, M Bartnikowski, A C Wu, M Veitch, K A Sokolowski, S M Millard, A R Pettit, V Glatt, C H Evans, J W Wells
{"title":"Healing of sub-critical femoral osteotomies in mice is unaffected by tacrolimus and deletion of recombination activating gene 1.","authors":"T-Y Liu, M Bartnikowski, A C Wu, M Veitch, K A Sokolowski, S M Millard, A R Pettit, V Glatt, C H Evans, J W Wells","doi":"10.22203/eCM.v041a22","DOIUrl":"https://doi.org/10.22203/eCM.v041a22","url":null,"abstract":"<p><p>Clinical management of delayed healing or non-union of long bone fractures and segmental defects poses a substantial orthopaedic challenge. There are suggestions in the literature that bone healing may be enhanced by inhibiting the activities of T and B lymphocytes, but this remains controversial. To examine this matter in more detail, sub-critical-sized segmental defects were created in the femora of mice and it was assessed whether there might be a benefit from the administration of a Food and Drug Administration (FDA)-approved drug that blocks T cell activation (tacrolimus). Defects were stabilised using an internal plate. In certain groups of animals, 1 mg/kg or 10 mg/kg tacrolimus was delivered locally to the defect site for 3 or 7 d using an implanted osmotic pump with a silicon catheter directing drug delivery into the defect area. Healing was monitored by weekly X-ray and assessed at 12 weeks by mechanical testing, µCT and histology. Radiographic and histological evaluations revealed that 100 % of defects healed well regardless of tacrolimus dosage or duration. A comparison of healed C57BL/6 and Rag1-/- femora by µCT and ex vivo torsion testing showed no differences within mouse strains in terms of bone volume, tissue volume, bone volume/tissue volume ratio, shear modulus, torsional rigidity or torsional stiffness. These data failed to support an important role for tacrolimus in modulating the natural healing of segmental defects under those experimental conditions.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":" ","pages":"345-354"},"PeriodicalIF":3.1,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25487933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The in vitro effects of platelet products on the biophysiological functions of human bone marrow mesenchymal stromal cells: a systematic review.","authors":"J Vun, M Panteli, E Jones, P V Giannoudis","doi":"10.22203/eCM.v041a19","DOIUrl":"https://doi.org/10.22203/eCM.v041a19","url":null,"abstract":"<p><p>Platelet products (PP) and bone-marrow aspirate are popular sources of osteoinductive signalling molecules and osteogenic bone marrow mesenchymal stromal cells (BM-MSCs) used in the treatment of impaired bone healing. However, the combined use of PP and BM-MSCs in clinical studies has reported mixed results. Understanding the cellular and molecular interactions between PP and BM-MSCs plays the important role of guiding future research and clinical application. This systematic review investigates the effects of PP on the biophysiological functions of BM-MSCs in in vitro human studies, including (i) proliferation, (ii) migration, (iii) differentiation, (iv) growth factor/cytokine/protein expression, (v) immunomodulation, (vi) chemotactic effect on haematopoietic stem cells, (vii) response to apoptotic stress, and (viii) gene expression. In vitro studies in human have demonstrated the multi-faceted 'priming effect' of PP on the biophysiological functions of BM-MSCs. PP has been shown to improve proliferation, migration, osteogenic differentiation, reaction to apoptotic stress as well as immunomodulatory, pro-angiogenic and pro-inflammatory capacities of BM-MSCs. Several factors are highlighted that restrict the transferability of these findings into clinical practice. Therefore, more collaborative in vitro research in humans modelled to reflect clinical practice is required to better understand the effects of PP exposure on the biophysiological function(s) of BM-MSCs in human.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":" ","pages":"269-315"},"PeriodicalIF":3.1,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25449607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}