T-Y Liu, M Bartnikowski, A C Wu, M Veitch, K A Sokolowski, S M Millard, A R Pettit, V Glatt, C H Evans, J W Wells
{"title":"他克莫司和重组激活基因1的缺失对小鼠亚临界股骨断骨愈合无影响。","authors":"T-Y Liu, M Bartnikowski, A C Wu, M Veitch, K A Sokolowski, S M Millard, A R Pettit, V Glatt, C H Evans, J W Wells","doi":"10.22203/eCM.v041a22","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical management of delayed healing or non-union of long bone fractures and segmental defects poses a substantial orthopaedic challenge. There are suggestions in the literature that bone healing may be enhanced by inhibiting the activities of T and B lymphocytes, but this remains controversial. To examine this matter in more detail, sub-critical-sized segmental defects were created in the femora of mice and it was assessed whether there might be a benefit from the administration of a Food and Drug Administration (FDA)-approved drug that blocks T cell activation (tacrolimus). Defects were stabilised using an internal plate. In certain groups of animals, 1 mg/kg or 10 mg/kg tacrolimus was delivered locally to the defect site for 3 or 7 d using an implanted osmotic pump with a silicon catheter directing drug delivery into the defect area. Healing was monitored by weekly X-ray and assessed at 12 weeks by mechanical testing, µCT and histology. Radiographic and histological evaluations revealed that 100 % of defects healed well regardless of tacrolimus dosage or duration. A comparison of healed C57BL/6 and Rag1-/- femora by µCT and ex vivo torsion testing showed no differences within mouse strains in terms of bone volume, tissue volume, bone volume/tissue volume ratio, shear modulus, torsional rigidity or torsional stiffness. These data failed to support an important role for tacrolimus in modulating the natural healing of segmental defects under those experimental conditions.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":" ","pages":"345-354"},"PeriodicalIF":3.2000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Healing of sub-critical femoral osteotomies in mice is unaffected by tacrolimus and deletion of recombination activating gene 1.\",\"authors\":\"T-Y Liu, M Bartnikowski, A C Wu, M Veitch, K A Sokolowski, S M Millard, A R Pettit, V Glatt, C H Evans, J W Wells\",\"doi\":\"10.22203/eCM.v041a22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clinical management of delayed healing or non-union of long bone fractures and segmental defects poses a substantial orthopaedic challenge. There are suggestions in the literature that bone healing may be enhanced by inhibiting the activities of T and B lymphocytes, but this remains controversial. To examine this matter in more detail, sub-critical-sized segmental defects were created in the femora of mice and it was assessed whether there might be a benefit from the administration of a Food and Drug Administration (FDA)-approved drug that blocks T cell activation (tacrolimus). Defects were stabilised using an internal plate. In certain groups of animals, 1 mg/kg or 10 mg/kg tacrolimus was delivered locally to the defect site for 3 or 7 d using an implanted osmotic pump with a silicon catheter directing drug delivery into the defect area. Healing was monitored by weekly X-ray and assessed at 12 weeks by mechanical testing, µCT and histology. Radiographic and histological evaluations revealed that 100 % of defects healed well regardless of tacrolimus dosage or duration. A comparison of healed C57BL/6 and Rag1-/- femora by µCT and ex vivo torsion testing showed no differences within mouse strains in terms of bone volume, tissue volume, bone volume/tissue volume ratio, shear modulus, torsional rigidity or torsional stiffness. These data failed to support an important role for tacrolimus in modulating the natural healing of segmental defects under those experimental conditions.</p>\",\"PeriodicalId\":11849,\"journal\":{\"name\":\"European cells & materials\",\"volume\":\" \",\"pages\":\"345-354\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European cells & materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.22203/eCM.v041a22\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European cells & materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22203/eCM.v041a22","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Healing of sub-critical femoral osteotomies in mice is unaffected by tacrolimus and deletion of recombination activating gene 1.
Clinical management of delayed healing or non-union of long bone fractures and segmental defects poses a substantial orthopaedic challenge. There are suggestions in the literature that bone healing may be enhanced by inhibiting the activities of T and B lymphocytes, but this remains controversial. To examine this matter in more detail, sub-critical-sized segmental defects were created in the femora of mice and it was assessed whether there might be a benefit from the administration of a Food and Drug Administration (FDA)-approved drug that blocks T cell activation (tacrolimus). Defects were stabilised using an internal plate. In certain groups of animals, 1 mg/kg or 10 mg/kg tacrolimus was delivered locally to the defect site for 3 or 7 d using an implanted osmotic pump with a silicon catheter directing drug delivery into the defect area. Healing was monitored by weekly X-ray and assessed at 12 weeks by mechanical testing, µCT and histology. Radiographic and histological evaluations revealed that 100 % of defects healed well regardless of tacrolimus dosage or duration. A comparison of healed C57BL/6 and Rag1-/- femora by µCT and ex vivo torsion testing showed no differences within mouse strains in terms of bone volume, tissue volume, bone volume/tissue volume ratio, shear modulus, torsional rigidity or torsional stiffness. These data failed to support an important role for tacrolimus in modulating the natural healing of segmental defects under those experimental conditions.
期刊介绍:
eCM provides an interdisciplinary forum for publication of preclinical research in the musculoskeletal field (Trauma, Maxillofacial (including dental), Spine and Orthopaedics).
The clinical relevance of the work must be briefly mentioned within the abstract, and in more detail in the paper. Poor abstracts which do not concisely cover the paper contents will not be sent for review. Incremental steps in research will not be entertained by eCM journal.Cross-disciplinary papers that go across our scope areas are welcomed.