EpigeneticsPub Date : 2024-12-01Epub Date: 2024-08-16DOI: 10.1080/15592294.2024.2392049
Aikaterini Katirtzoglou, Søren B Hansen, Harald Sveier, Michael D Martin, Jaelle C Brealey, Morten T Limborg
{"title":"Genomic context determines the effect of DNA methylation on gene expression in the gut epithelium of Atlantic salmon (<i>Salmo salar</i>).","authors":"Aikaterini Katirtzoglou, Søren B Hansen, Harald Sveier, Michael D Martin, Jaelle C Brealey, Morten T Limborg","doi":"10.1080/15592294.2024.2392049","DOIUrl":"10.1080/15592294.2024.2392049","url":null,"abstract":"<p><p>The canonical view of DNA methylation, a pivotal epigenetic regulation mechanism in eukaryotes, dictates its role as a suppressor of gene activity, particularly within promoter regions. However, this view is being challenged as it is becoming increasingly evident that the connection between DNA methylation and gene expression varies depending on the genomic location and is therefore more complex than initially thought. We examined DNA methylation levels in the gut epithelium of Atlantic salmon (<i>Salmo salar</i>) using whole-genome bisulfite sequencing, which we correlated with gene expression data from RNA sequencing of the same gut tissue sample (RNA-seq). Assuming epigenetic signals might be pronounced between distinctive phenotypes, we compared large and small fish, finding 22 significant associations between 22 differentially methylated regions and 21 genes. We did not detect significant methylation differences between large and small fish. However, we observed a consistent signal of methylation levels around the transcription start sites (TSS), being negatively correlated with the expression levels of those genes. We found both negative and positive associations of methylation levels with gene expression further upstream or downstream of the TSS, revealing a more unpredictable pattern. The 21 genes showing significant methylation-expression correlations were involved in biological processes related to salmon health, such as growth and immune responses. Deciphering how DNA methylation affects the expression of such genes holds great potential for future applications. For instance, our results suggest the importance of genomic context in targeting epigenetic modifications to improve the welfare of aquaculture species like Atlantic salmon.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11332636/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"GGNBP2 regulates histone ubiquitination and methylation in spermatogenesis.","authors":"Kaimin Guo, Yin Cao, Zhiyi Zhao, Jiantao Zhao, Lingyun Liu, Hongliang Wang","doi":"10.1080/15592294.2024.2381849","DOIUrl":"10.1080/15592294.2024.2381849","url":null,"abstract":"<p><p>Gametogenetin binding protein 2 (GGNBP2) was indispensable in normal spermatids for transformation into mature spermatozoa in mice, and when Gametogenetin binding protein 2 is bound to BRCC36 and RAD51, the complex participates in repairing DNA double-strand breaks (DSB) during the meiotic progression of spermatocytes. Ggnbp2 knockout resulted in the up-regulation of H2A<sub>K119ubi</sub> and down-regulation of H2B<sub>K120ubi</sub> in GC-2 cells (mouse spermatogonia-derived cell line) and postnatal day 18 testis lysate. Our results also demonstrated that Gametogenetin binding protein 2 inducedASXL1 to activate the deubiquitinating enzyme BAP1 in deubiquitinating H2A, while Gametogenetin binding protein 2 knockout disrupted the interaction between ASXL1 and BAP1, resulting in BAP1 localization change. Furthermore, the Gametogenetin binding protein 2 deletion reduced H2B ubiquitination by affecting E2 enzymes and E3 ligase binding. Gametogenetin binding protein 2 regulated H2A and H2B ubiquitination levels and controlled H3<sub>K27</sub> and H3<sub>K79</sub> methylation by PRC2 subunits and histone H3K79 methyltransferase. Altogether, our results suggest that Ggnbp2 knockout increased DNA damage response by promoting H2A ubiquitination and H3<sub>K27</sub>trimethylation (H3<sub>K27me3</sub>) and reduced nucleosome stability by decreasing H2B ubiquitination and H3K79 dimethylation (H3<sub>K79me2</sub>), revealing new mechanisms of epigenetic phenomenon during spermatogenesis. Gametogenetin binding protein 2 seems critical in regulating histone modification and chromatin structure in spermatogenesis.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigeneticsPub Date : 2024-12-01Epub Date: 2024-02-18DOI: 10.1080/15592294.2024.2318519
Daniel M Sapozhnikov, Moshe Szyf
{"title":"Genetic confounds of transgenerational epigenetic inheritance in mice.","authors":"Daniel M Sapozhnikov, Moshe Szyf","doi":"10.1080/15592294.2024.2318519","DOIUrl":"10.1080/15592294.2024.2318519","url":null,"abstract":"<p><p>Transgenerational epigenetic inheritance in mammals remains a controversial phenomenon. A recent study by Takahashi et al. provides evidence for this mode of inheritance in mice by using a CRISPR/Cas9-based epigenetic editing technique to modify DNA methylation levels at specific promoters and then demonstrating the inheritance of the gain in methylation in offspring. In this technical commentary, we argue that the method used in the original study inherently amplifies the likelihood of genetic changes that thereafter lead to the heritability of epigenetic changes. We provide evidence that genetic changes from multiple sources do indeed occur in these experiments and explore several avenues by which these changes could be causal to the apparent inheritance of epigenetic changes. We conclude a genetic basis of inheritance cannot be ruled out and thus transgenerational epigenetic inheritance has not been adequately established by the original study.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139899588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigeneticsPub Date : 2024-12-01Epub Date: 2024-10-17DOI: 10.1080/15592294.2024.2413815
Elizabeth W Diemer, Johanna Tuhkanen, Sara Sammallahti, Kati Heinonen, Alexander Neumann, Sonia L Robinson, Matthew Suderman, Jianping Jin, Christian M Page, Ruby Fore, Sheryl L Rifas-Shiman, Emily Oken, Patrice Perron, Luigi Bouchard, Marie France Hivert, Katri Räikköne, Jari Lahti, Edwina H Yeung, Weihua Guan, Sunni L Mumford, Maria C Magnus, Siri Håberg, Wenche Nystad, Christine L Parr, Stephanie J London, Janine F Felix, Henning Tiemeier
{"title":"Epigenome-wide meta-analysis of prenatal vitamin D insufficiency and cord blood DNA methylation.","authors":"Elizabeth W Diemer, Johanna Tuhkanen, Sara Sammallahti, Kati Heinonen, Alexander Neumann, Sonia L Robinson, Matthew Suderman, Jianping Jin, Christian M Page, Ruby Fore, Sheryl L Rifas-Shiman, Emily Oken, Patrice Perron, Luigi Bouchard, Marie France Hivert, Katri Räikköne, Jari Lahti, Edwina H Yeung, Weihua Guan, Sunni L Mumford, Maria C Magnus, Siri Håberg, Wenche Nystad, Christine L Parr, Stephanie J London, Janine F Felix, Henning Tiemeier","doi":"10.1080/15592294.2024.2413815","DOIUrl":"10.1080/15592294.2024.2413815","url":null,"abstract":"<p><p>Low maternal vitamin D concentrations during pregnancy have been associated with a range of offspring health outcomes. DNA methylation is one mechanism by which the maternal vitamin D status during pregnancy could impact offspring's health in later life. We aimed to evaluate whether maternal vitamin D insufficiency during pregnancy was conditionally associated with DNA methylation in the offspring cord blood. Maternal vitamin D insufficiency (plasma 25-hydroxy vitamin D <math><mo>≤</mo></math> 75 nmol/L) during pregnancy and offspring cord blood DNA methylation, assessed using Illumina Infinium 450k or Illumina EPIC Beadchip, was collected for 3738 mother-child pairs in 7 cohorts as part of the Pregnancy and Childhood Epigenetics (PACE) consortium. Associations between maternal vitamin D and offspring DNA methylation, adjusted for fetal sex, maternal smoking, maternal age, maternal pre-pregnancy or early pregnancy BMI, maternal education, gestational age at measurement of 25(OH)D, parity, and cell type composition, were estimated using robust linear regression in each cohort, and a fixed-effects meta-analysis was conducted. The prevalence of vitamin D insufficiency ranged from 44.3% to 78.5% across cohorts. Across 364,678 CpG sites, none were associated with maternal vitamin D insufficiency at an epigenome-wide significant level after correcting for multiple testing using Bonferroni correction or a less conservative Benjamini-Hochberg False Discovery Rate approach (FDR, <i>p</i> > 0.05). In this epigenome-wide association study, we did not find convincing evidence of a conditional association of vitamin D insufficiency with offspring DNA methylation at any measured CpG site.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487971/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigeneticsPub Date : 2024-12-01Epub Date: 2024-07-05DOI: 10.1080/15592294.2024.2375030
Guilherme da Silva Rodrigues, Natalia Yumi Noronha, João Gabriel Ribeiro de Lima, Isabela Harumi Yonehara Noma, Andressa Crystine da Silva Sobrinho, Luísa Maria Diani, Ana P Pinto, Karine Pereira Rodrigues, Marcela Augusta de Souza Pinhel, Carla Barbosa Nonino, Lígia Moriguchi Watanabe, Carlos Roberto Bueno Júnior
{"title":"Combined exercise training decreases blood pressure in OLDER women with <i>NOS3</i> polymorphism providing changes in differentially methylated regions (DMRs).","authors":"Guilherme da Silva Rodrigues, Natalia Yumi Noronha, João Gabriel Ribeiro de Lima, Isabela Harumi Yonehara Noma, Andressa Crystine da Silva Sobrinho, Luísa Maria Diani, Ana P Pinto, Karine Pereira Rodrigues, Marcela Augusta de Souza Pinhel, Carla Barbosa Nonino, Lígia Moriguchi Watanabe, Carlos Roberto Bueno Júnior","doi":"10.1080/15592294.2024.2375030","DOIUrl":"10.1080/15592294.2024.2375030","url":null,"abstract":"<p><p>The mechanisms by which the ageing process is associated to an unhealthy lifestyle and how they play an essential role in the aetiology of systemic arterial hypertension have not yet been completely elucidated. Our objective is to investigate the influence of NOS3 polymorphisms [-786T > C and (Glu298Asp)] on systolic blood pressure (SBP) and diastolic blood pressure (DBP) response, differentially methylated regions (DMRs), and physical fitness of adult and older women after a 14-week combined training intervention. The combined training was carried out for 14 weeks, performed 3 times a week, totalling 180 minutes weekly. The genotyping experiment used Illumina Infinium Global Screening Array version 2.0 (GSA V2.0) and Illumina's EPIC Infinium Methylation BeadChip. The participants were separated into SNP rs2070744 in TT (59.7 ± 6.2 years) and TC + CC (60.0 ± 5.2 years), and SNP rs17999 in GluGlu (58.8 ± 5.7 years) and GluAsp + AspAsp (61.6 ± 4.9 years). We observed an effect of time for variables BP, physical capacities, and cholesterol. DMRs related to SBP and DBP were identified for the rs2070744 and rs17999 groups pre- and decreased numbers of DMRs post-training. When we analysed the effect of exercise training in pre- and post-comparisons, the GluGlu SNP (rs17999) showed 10 DMRs, and after enrichment, we identified several biological biases. The combined training improved the SBP and DBP values of the participants regardless of the SNPs. In addition, exercise training affected DNA methylation differently between the groups of NOS3 polymorphisms.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229753/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigeneticsPub Date : 2024-12-01Epub Date: 2024-07-02DOI: 10.1080/15592294.2024.2375011
Shuaichen Li, Puntita Siengdee, Frieder Hadlich, Nares Trakooljul, Michael Oster, Henry Reyer, Klaus Wimmers, Siriluck Ponsuksili
{"title":"Dynamics of DNA methylation during osteogenic differentiation of porcine synovial membrane mesenchymal stem cells from two metabolically distinct breeds.","authors":"Shuaichen Li, Puntita Siengdee, Frieder Hadlich, Nares Trakooljul, Michael Oster, Henry Reyer, Klaus Wimmers, Siriluck Ponsuksili","doi":"10.1080/15592294.2024.2375011","DOIUrl":"10.1080/15592294.2024.2375011","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs), with the ability to differentiate into osteoblasts, adipocytes, or chondrocytes, show evidence that the donor cell's metabolic type influences the osteogenic process. Limited knowledge exists on DNA methylation changes during osteogenic differentiation and the impact of diverse donor genetic backgrounds on MSC differentiation. In this study, synovial membrane mesenchymal stem cells (SMSCs) from two pig breeds (Angeln Saddleback, AS; German Landrace, DL) with distinct metabolic phenotypes were isolated, and the methylation pattern of SMSCs during osteogenic induction was investigated. Results showed that most differentially methylated regions (DMRs) were hypomethylated in osteogenic-induced SMSC group. These DMRs were enriched with genes of different osteogenic signalling pathways at different time points including Wnt, ECM, TGFB and BMP signalling pathways. AS pigs consistently exhibited a higher number of hypermethylated DMRs than DL pigs, particularly during the peak of osteogenesis (day 21). Predicting transcription factor motifs in regions of DMRs linked to osteogenic processes and donor breeds revealed influential motifs, including <i>KLF1, NFATC3, ZNF148, ASCL1, FOXI1</i>, and <i>KLF5</i>. These findings contribute to understanding the pattern of methylation changes promoting osteogenic differentiation, emphasizing the substantial role of donor the metabolic type and epigenetic memory of different donors on SMSC differentiation.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigeneticsPub Date : 2024-12-01Epub Date: 2024-08-05DOI: 10.1080/15592294.2024.2380929
Alexandra Korolenko, Michael K Skinner
{"title":"Generational stability of epigenetic transgenerational inheritance facilitates adaptation and evolution.","authors":"Alexandra Korolenko, Michael K Skinner","doi":"10.1080/15592294.2024.2380929","DOIUrl":"10.1080/15592294.2024.2380929","url":null,"abstract":"<p><p>The epigenome and epigenetic inheritance were not included in the original modern synthesis theory or more recent extended evolutionary synthesis of evolution. In a broad range of species, the environment has been shown to play a significant role in natural selection, which more recently has been shown to occur through epigenetic alterations and epigenetic inheritance. However, even with this evidence, the field of epigenetics and epigenetic inheritance has been left out of modern evolutionary synthesis, as well as other current evolutionary models. Epigenetic mechanisms can direct the regulation of genetic processes (e.g. gene expression) and also can be directly changed by the environment. In contrast, DNA sequence cannot be directly altered by the environment. The goal of this review is to present the evidence of how epigenetics and epigenetic inheritance can alter phenotypic variation in numerous species. This can occur at a significantly higher frequency than genetic change, so correlates with the frequency of evolutionary change. In addition, the concept and importance of generational stability of transgenerational inheritance is incorporated into evolutionary theory. For there to be a better understanding of evolutionary biology, we must incorporate all aspects of molecular (e.g. genetics and epigenetics) and biological sciences (e.g. environment and adaptation).</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11305060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigeneticsPub Date : 2024-12-01Epub Date: 2024-03-04DOI: 10.1080/15592294.2024.2322386
Chinonye Doris Onuzulu, Samantha Lee, Sujata Basu, Jeannette Comte, Yan Hai, Nikho Hizon, Shivam Chadha, Maria Shenna Fauni, Andrew J Halayko, Christopher D Pascoe, Meaghan J Jones
{"title":"Novel DNA methylation changes in mouse lungs associated with chronic smoking.","authors":"Chinonye Doris Onuzulu, Samantha Lee, Sujata Basu, Jeannette Comte, Yan Hai, Nikho Hizon, Shivam Chadha, Maria Shenna Fauni, Andrew J Halayko, Christopher D Pascoe, Meaghan J Jones","doi":"10.1080/15592294.2024.2322386","DOIUrl":"10.1080/15592294.2024.2322386","url":null,"abstract":"<p><p>Smoking is a potent cause of asthma exacerbations, chronic obstructive pulmonary disease (COPD) and many other health defects, and changes in DNA methylation (DNAm) have been identified as a potential link between smoking and these health outcomes. However, most studies of smoking and DNAm have been done using blood and other easily accessible tissues in humans, while evidence from more directly affected tissues such as the lungs is lacking. Here, we identified DNAm patterns in the lungs that are altered by smoking. We used an established mouse model to measure the effects of chronic smoke exposure first on lung phenotype immediately after smoking and then after a period of smoking cessation. Next, we determined whether our mouse model recapitulates previous DNAm patterns observed in smoking humans, specifically measuring DNAm at a candidate gene responsive to cigarette smoke, <i>Cyp1a1</i>. Finally, we carried out epigenome-wide DNAm analyses using the newly released Illumina mouse methylation microarrays. Our results recapitulate some of the phenotypes and DNAm patterns observed in human studies but reveal 32 differentially methylated genes specific to the lungs which have not been previously associated with smoking. The affected genes are associated with nicotine dependency, tumorigenesis and metastasis, immune cell dysfunction, lung function decline, and COPD. This research emphasizes the need to study CS-mediated DNAm signatures in directly affected tissues like the lungs, to fully understand mechanisms underlying CS-mediated health outcomes.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913724/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140021232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EpigeneticsPub Date : 2024-12-01Epub Date: 2024-03-14DOI: 10.1080/15592294.2024.2318516
Marjolein M van Vliet, Sam Schoenmakers, Joost Gribnau, Régine P M Steegers-Theunissen
{"title":"The one-carbon metabolism as an underlying pathway for placental DNA methylation - a systematic review.","authors":"Marjolein M van Vliet, Sam Schoenmakers, Joost Gribnau, Régine P M Steegers-Theunissen","doi":"10.1080/15592294.2024.2318516","DOIUrl":"10.1080/15592294.2024.2318516","url":null,"abstract":"<p><p>Epigenetic modifications, including DNA methylation, are proposed mechanisms explaining the impact of parental exposures to foetal development and lifelong health. Micronutrients including folate, choline, and vitamin B<sub>12</sub> provide methyl groups for the one-carbon metabolism and subsequent DNA methylation processes. Placental DNA methylation changes in response to one-carbon moieties hold potential targets to improve obstetrical care. We conducted a systematic review on the associations between one-carbon metabolism and human placental DNA methylation. We included 22 studies. Findings from clinical studies with minimal ErasmusAGE quality score 5/10 (<i>n</i> = 15) and <i>in vitro</i> studies (<i>n</i> = 3) are summarized for different one-carbon moieties. Next, results are discussed per study approach: (1) global DNA methylation (<i>n</i> = 9), (2) genome-wide analyses (<i>n</i> = 4), and (3) gene specific (<i>n</i> = 14). Generally, one-carbon moieties were not associated with global methylation, although conflicting outcomes were reported specifically for choline. Using genome-wide approaches, few differentially methylated sites associated with S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), or dietary patterns. Most studies taking a gene-specific approach indicated site-specific relationships depending on studied moiety and genomic region, specifically in genes involved in growth and development including <i>LEP</i>, <i>NR3C1, CRH</i>, and <i>PlGF</i>; however, overlap between studies was low. Therefore, we recommend to further investigate the impact of an optimized one-carbon metabolism on DNA methylation and lifelong health.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950272/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140131045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Circ-0006332 stimulates cardiomyocyte pyroptosis via the miR-143/TLR2 axis to promote doxorubicin-induced cardiac damage.","authors":"Ping Zhang, Yuanyuan Liu, Yuliang Zhan, Pengtao Zou, Xinyong Cai, Yanmei Chen, Liang Shao","doi":"10.1080/15592294.2024.2380145","DOIUrl":"10.1080/15592294.2024.2380145","url":null,"abstract":"<p><p>Doxorubicin (DOX)-mediated cardiotoxicity can impair the clinical efficacy of chemotherapy, leading to heart failure (HF). Given the importance of circRNAs and miRNAs in HF, this paper intended to delineate the mechanism of the circular RNA 0006332 (circ -0,006,332)/microRNA (miR)-143/Toll-like receptor 2 (TLR2) axis in doxorubicin (DOX)-induced HF. The binding of miR-143 to circ -0,006,332 and TLR2 was assessed with the dual-luciferase assay, and the binding between miR-143 and circ -0,006,332 was determined with FISH, RIP, and RNA pull-down assays. miR-143 and/or circ -0,006,332 were overexpressed in rats and cardiomyocytes, followed by DOX treatment. In cardiomyocytes, miR-143 and TLR2 expression, cell viability, LDH release, ATP contents, and levels of IL-1β, IL-18, TNF-α, and pyroptosis-related molecules were examined. In rats, cardiac function, serum levels of cardiac enzymes, apoptosis, myocardial fibrosis, and levels of IL-1β, IL-18, TNF-α, TLR2, and pyroptosis-related molecules were detected. miR-143 diminished TLR2 expression by binding to TLR2, and circ -0,006,332 bound to miR-143 to downregulate miR-143 expression. miR-143 expression was reduced and TLR2 expression was augmented in DOX-induced cardiomyocytes. miR-143 inhibited DOX-induced cytotoxicity by suppressing pyroptosis in H9C2 cardiomyocytes. In DOX-induced rats, miR-143 reduced cardiac dysfunction, myocardial apoptosis, myocardial fibrosis, TLR2 levels, and pyroptosis. Furthermore, overexpression of circ -0,006,332 blocked these effects of miR-143 on DOX-induced cardiomyocytes and rats. Circ -0,006,332 stimulates cardiomyocyte pyroptosis by downregulating miR-143 and upregulating TLR2, thus promoting DOX-induced cardiac injury.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}