{"title":"ANRIL upregulates TGFBR1 to promote idiopathic pulmonary fibrosis in TGF-β1-treated lung fibroblasts via sequestering let-7d-5p.","authors":"Weidong Wu, Nanding Yu, Weiming Chen, Yong Zhu","doi":"10.1080/15592294.2024.2435682","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a progressive and life-threatening respiratory disease characterized by worsening lung function due to excessive scarring. The objective of this study was to investigate the role of the long non-coding RNA ANRIL (antisense non-coding RNA in the INK4 locus) in the development of IPF. Our research revealed a significant increase in ANRIL expression in pulmonary fibrosis, consistent with prior studies indicating elevated ANRIL levels in fibrotic tissues. <i>In vitro</i> experiments demonstrated that elevated ANRIL expression promoted fibroblast activation, as evidenced by the upregulation of fibrosis-related markers. Mechanistically, we found that ANRIL interacts with let-7d-5p, a microRNA involved in gene regulation, acting as a sponge for let-7d-5p. Functional experiments confirmed a potential influence of let-7d-5p on fibroblast activation through direct interaction with ANRIL. Furthermore, our investigation identified TGFBR1 as a potential mediator of ANRIL's fibrogenic effects. Silence of TGFBR1 mitigated the fibrotic phenotype induced by ANRIL overexpression. Collectively, these results suggest that ANRIL promotes fibroblast activation and fibrosis development, possibly through the let-7d-5p/TGFBR1 axis, indicating that ANRIL could be a potential therapeutic target for pulmonary fibrosis.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2435682"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610569/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2024.2435682","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and life-threatening respiratory disease characterized by worsening lung function due to excessive scarring. The objective of this study was to investigate the role of the long non-coding RNA ANRIL (antisense non-coding RNA in the INK4 locus) in the development of IPF. Our research revealed a significant increase in ANRIL expression in pulmonary fibrosis, consistent with prior studies indicating elevated ANRIL levels in fibrotic tissues. In vitro experiments demonstrated that elevated ANRIL expression promoted fibroblast activation, as evidenced by the upregulation of fibrosis-related markers. Mechanistically, we found that ANRIL interacts with let-7d-5p, a microRNA involved in gene regulation, acting as a sponge for let-7d-5p. Functional experiments confirmed a potential influence of let-7d-5p on fibroblast activation through direct interaction with ANRIL. Furthermore, our investigation identified TGFBR1 as a potential mediator of ANRIL's fibrogenic effects. Silence of TGFBR1 mitigated the fibrotic phenotype induced by ANRIL overexpression. Collectively, these results suggest that ANRIL promotes fibroblast activation and fibrosis development, possibly through the let-7d-5p/TGFBR1 axis, indicating that ANRIL could be a potential therapeutic target for pulmonary fibrosis.
期刊介绍:
Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed.
Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to):
DNA methylation
Nucleosome positioning and modification
Gene silencing
Imprinting
Nuclear reprogramming
Chromatin remodeling
Non-coding RNA
Non-histone chromosomal elements
Dosage compensation
Nuclear organization
Epigenetic therapy and diagnostics
Nutrition and environmental epigenetics
Cancer epigenetics
Neuroepigenetics