{"title":"A promising application of kidney-specific cell-free DNA methylation markers in real-time monitoring sepsis-induced acute kidney injury.","authors":"Ruilian You, Xiangming Quan, Peng Xia, Chao Zhang, Anlei Liu, Hanshu Liu, Ling Yang, Huadong Zhu, Limeng Chen","doi":"10.1080/15592294.2024.2408146","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis-induced acute kidney injury (SI-AKI) is a common clinical syndrome that is associated with high mortality and morbidity. Effective timely detection may improve the outcome of SI-AKI. Kidney-derived cell-free DNA (cfDNA) may provide new insight into understanding and identifying SI-AKI. Plasma cfDNA from 82 healthy individuals, 7 patients with sepsis non-acute kidney injury (SN-AKI), and 9 patients with SI-AKI was subjected to genomic methylation sequencing. We deconstructed the relative contribution of cfDNA from different cell types based on cell-specific methylation markers and focused on exploring the association between kidney-derived cfDNA and SI-AKI.Based on the deconvolution of the cfDNA methylome: SI-AKI patients displayed the elevated cfDNA concentrations with an increased contribution of kidney epithelial cells (kidney-Ep) DNA; kidney-Ep derived cfDNA achieved high accuracy in distinguishing SI-AKI from SN-AKI (AUC = 0.92, 95% CI 0.7801-1); the higher kidney-ep cfDNA concentrations tended to correlate with more advanced stages of SI-AKI; strikingly, SN-AKI patients with potential kidney damage unmet by SI-AKI criteria showed higher levels of kidney-Ep derived cfDNA than healthy individuals. The autonomous screening of kidney-Ep (<i>n</i> = 24) and kidney endothelial (kidney-Endo, <i>n</i> = 12) specific methylation markers indicated the unique identity of kidney-Ep/kidney-Endo compared with other cell types, and its targeted assessment reproduced the main findings of the deconvolution of the cfDNA methylome. Our study first demonstrates that kidney-Ep- and kidney-Endo-specific methylation markers can serve as a novel marker for SI-AKI emergence, supporting further exploration of the utility of kidney-specific cfDNA methylation markers in the study of SI-AKI.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2408146"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459754/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2024.2408146","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sepsis-induced acute kidney injury (SI-AKI) is a common clinical syndrome that is associated with high mortality and morbidity. Effective timely detection may improve the outcome of SI-AKI. Kidney-derived cell-free DNA (cfDNA) may provide new insight into understanding and identifying SI-AKI. Plasma cfDNA from 82 healthy individuals, 7 patients with sepsis non-acute kidney injury (SN-AKI), and 9 patients with SI-AKI was subjected to genomic methylation sequencing. We deconstructed the relative contribution of cfDNA from different cell types based on cell-specific methylation markers and focused on exploring the association between kidney-derived cfDNA and SI-AKI.Based on the deconvolution of the cfDNA methylome: SI-AKI patients displayed the elevated cfDNA concentrations with an increased contribution of kidney epithelial cells (kidney-Ep) DNA; kidney-Ep derived cfDNA achieved high accuracy in distinguishing SI-AKI from SN-AKI (AUC = 0.92, 95% CI 0.7801-1); the higher kidney-ep cfDNA concentrations tended to correlate with more advanced stages of SI-AKI; strikingly, SN-AKI patients with potential kidney damage unmet by SI-AKI criteria showed higher levels of kidney-Ep derived cfDNA than healthy individuals. The autonomous screening of kidney-Ep (n = 24) and kidney endothelial (kidney-Endo, n = 12) specific methylation markers indicated the unique identity of kidney-Ep/kidney-Endo compared with other cell types, and its targeted assessment reproduced the main findings of the deconvolution of the cfDNA methylome. Our study first demonstrates that kidney-Ep- and kidney-Endo-specific methylation markers can serve as a novel marker for SI-AKI emergence, supporting further exploration of the utility of kidney-specific cfDNA methylation markers in the study of SI-AKI.
期刊介绍:
Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed.
Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to):
DNA methylation
Nucleosome positioning and modification
Gene silencing
Imprinting
Nuclear reprogramming
Chromatin remodeling
Non-coding RNA
Non-histone chromosomal elements
Dosage compensation
Nuclear organization
Epigenetic therapy and diagnostics
Nutrition and environmental epigenetics
Cancer epigenetics
Neuroepigenetics