Energy Storage最新文献

筛选
英文 中文
Ortho- and Para-Nitrile Substituted Effect of (1H-Indol-2-Yl)Benzonitrile-Boehmite on the Nano Structures, Surface Area and Hydrogen Storage 正腈和对腈取代的 (1H-Indol-2-Yl)Benzonitrile-Boehmite 对纳米结构、表面积和储氢的影响
Energy Storage Pub Date : 2024-09-02 DOI: 10.1002/est2.70034
Ban D. Salih, Ammar S. Mohammed, Reem S. Najm, Ahmed R. Mahmood, Mustafa A. Alheety
{"title":"Ortho- and Para-Nitrile Substituted Effect of (1H-Indol-2-Yl)Benzonitrile-Boehmite on the Nano Structures, Surface Area and Hydrogen Storage","authors":"Ban D. Salih,&nbsp;Ammar S. Mohammed,&nbsp;Reem S. Najm,&nbsp;Ahmed R. Mahmood,&nbsp;Mustafa A. Alheety","doi":"10.1002/est2.70034","DOIUrl":"https://doi.org/10.1002/est2.70034","url":null,"abstract":"<div>\u0000 \u0000 <p>In this work, x(1H-indol-2-yl)benzonitrile; where x = ortho or para were used to synthesize boehmite composites using one-pot electrochemical method in the presence of NaCl as an electrolyte. The prepared composites were characterized using UV–vis, XRD, SEM, and BET. The measurements showed that the type of substituents (ortho, para) had an effect on the resulting nanostructure of the composites, which appeared in the form of nanosheets and nanoballs. The composites were used as materials to store hydrogen at different temperatures (77, 173, 223, and 273 K) under different pressures (10–90 bar) in order to determine the equilibrium pressure for each nanocomposite. The study demonstrated that the composite boehmite-ortho-(1H-indol-2-yl)benzonitrile nano balls has a storage capacity of 3.82 wt% at an equilibrium pressure of 75 bar, while the composite boehmite-para-(1H-indol-2-yl)benzonitrile nanosheets have the highest storage capacity of 4.49 wt% and an equilibrium pressure of 45 bar.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Thermal Performance and Cooling Solutions of Phase Change Material in Battery Thermal Management System: A Computational Analysis 提高电池热管理系统中相变材料的热性能和冷却解决方案:计算分析
Energy Storage Pub Date : 2024-09-02 DOI: 10.1002/est2.70036
Gourav Kumar Singh, Jay R. Patel, Manish K. Rathod
{"title":"Enhancing Thermal Performance and Cooling Solutions of Phase Change Material in Battery Thermal Management System: A Computational Analysis","authors":"Gourav Kumar Singh,&nbsp;Jay R. Patel,&nbsp;Manish K. Rathod","doi":"10.1002/est2.70036","DOIUrl":"https://doi.org/10.1002/est2.70036","url":null,"abstract":"<div>\u0000 \u0000 <p>Batteries, particularly lithium-ion batteries, are sensitive to temperature changes. Battery thermal management systems (BTMS) are essential in various battery-powered applications, especially electric vehicles (EVs) and portable electronic devices. This study examines the importance of phase change material (PCM) in battery packs using numerical analysis. An examination is conducted on a battery pack consisting of 18 650 battery cells arranged in a 5 × 5 configuration. A comparative analysis is performed to evaluate the thermal efficiency of the battery pack with and without PCM. The study examines the influence of ambient conditions and charging rates on the selection of PCM for battery packs. A hybrid cooling solution utilizing PCM and a water tube has also been investigated against conventional passive PCM-based BTMS. Additionally, two types of fins, namely circular and spiral fins, are introduced to improve the heat transfer rate. PCM-based cooling systems are most effective when the ambient temperature is below the melting temperature of the PCM. However, when the ambient temperature exceeds the melting temperature of the PCM, this cooling system outperforms conventional PCM-based cooling. The maximum temperature is found as 319, 316.9, and 315.3 K using without fin, circular fin and spriral fina, respectively. The spiral fins are found more effective than circular fins under high ambient temperature. In conclusion, The PCM-with spiral-fin system demonstrates notable benefits in high-temperature environments.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drive Cycle-Based Estimation of Energy Consumption for Electric Two-Wheeler 基于驱动周期的电动两轮车能耗估算
Energy Storage Pub Date : 2024-09-02 DOI: 10.1002/est2.70030
Bhaskar Pandey, Devendra Vashist
{"title":"Drive Cycle-Based Estimation of Energy Consumption for Electric Two-Wheeler","authors":"Bhaskar Pandey,&nbsp;Devendra Vashist","doi":"10.1002/est2.70030","DOIUrl":"https://doi.org/10.1002/est2.70030","url":null,"abstract":"<div>\u0000 \u0000 <p>The transportation sector is the backbone of the economic growth of any country. However, the heavy dependence of this sector on petroleum fuel is a matter of concern for sustainable development. To address this issue countries are working toward green energy-based transportation, and among all viable solutions electric vehicles (EVs) are emerging as front runners. Range anxiety is one of the most prominent concerns in EV adoption. The range of a vehicle depends on the energy consumption so it becomes crucial to estimate it very precisely. There are many standard drive cycles such as the New European Driving Cycle (NEDC) and Worldwide harmonized Light-duty Vehicle Test Cycles (WLTC) which are used for the estimation of energy consumption. However, these standard cycles fail to capture the driving behavior of real traffic. Due to this reason, these standard cycles underestimate the energy consumption compared with actual consumption. For more realistic energy requirement estimations, researchers are focusing on the development of real-world drive cycles specific to a particular geography. In this paper, a real-world drive cycle of electric two-wheeler has been developed for the city of Lucknow, India, and compared with the driving characteristics and energy consumption estimates of WLTC. The energy requirement per km for the Lucknow drive cycle and WLTC are found as 14.89 Wh/km and 11.95 Wh/km, respectively, which indicates per km energy required estimation for LDC is 24.60% higher than WLTC.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermally integrated pumped thermal energy storage systems based on organic Rankine cycle: Comparative investigation and multi-objective multiverse optimization 基于有机郎肯循环的热集成抽水蓄能系统:比较研究和多目标多元宇宙优化
Energy Storage Pub Date : 2024-09-02 DOI: 10.1002/est2.70007
Fateme Norooziyan, Arshiya Noorpoor, Fateme Ahmadi Boyaghchi
{"title":"Thermally integrated pumped thermal energy storage systems based on organic Rankine cycle: Comparative investigation and multi-objective multiverse optimization","authors":"Fateme Norooziyan,&nbsp;Arshiya Noorpoor,&nbsp;Fateme Ahmadi Boyaghchi","doi":"10.1002/est2.70007","DOIUrl":"https://doi.org/10.1002/est2.70007","url":null,"abstract":"<p>This work introduces two new thermally integrated pumped thermal energy storage (TIPTES) systems, including thermally integrated vapor compression heat pump (TIHP) as a charging cycle and dual-pressure organic Rankine cycle (DPORC) and dual-loop organic Rankine cycle (DLORC) as discharging cycles to investigate their capability of improving roundtrip efficiency compared with the basic ORC (BORC). The thermodynamic and economic performance of the proposed TIHP-DPORC and TIHP-DLORC are analyzed and compared with TIHP-BORC using various working fluids. The multi-objective multiverse optimization algorithm is conducted to ascertain the systems' optimum roundtrip efficiency and cost rate. Results indicate that at the same storage temperature, the TIHP-DLORC gives the highest roundtrip and exergy efficiencies of 219.9% and 43.53% with R1233zd(E), indicating 6.69% and 8.04% improvements compared with the optimum TIHP-BORC. Moreover, it shows the lowest levelized cost of storage (LCOS) and payback period (PP) of 0.160 $/kWh and 4.5 years, respectively, with a maximum net present value of 1.973 M$. Although the cost rate of TIHP-DLORC is high, its excellent thermodynamic and economic performance compared with the existing TIPTES systems in the literature indicates that DLORC is a more appropriate candidate to be applied in the TIPTES systems.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mg-Ion Conducting Gel Polymer Electrolyte Based on High Flash Point Solvent Adiponitrile for Magnesium Ion Batteries 基于高闪点溶剂己二腈的用于镁离子电池的镁离子导电凝胶聚合物电解质
Energy Storage Pub Date : 2024-09-02 DOI: 10.1002/est2.70029
Pratibha Kumari, Neetu Yadav, S. A. Hashmi
{"title":"Mg-Ion Conducting Gel Polymer Electrolyte Based on High Flash Point Solvent Adiponitrile for Magnesium Ion Batteries","authors":"Pratibha Kumari,&nbsp;Neetu Yadav,&nbsp;S. A. Hashmi","doi":"10.1002/est2.70029","DOIUrl":"https://doi.org/10.1002/est2.70029","url":null,"abstract":"<div>\u0000 \u0000 <p>Due to some specific properties of adiponitrile (ADN) including high oxidative stability and high flash point, it is proposed as co-solvent with an ionic liquid (IL) as a promising electrolyte solvent for application in magnesium batteries. Herein, we report a flexible film of gel polymer electrolyte (GPE) comprising a polymer poly(vinylidene fluoride-<i>co</i>-hexafluoropropylene) (PVdF-HFP) in which a liquid electrolyte of Mg-trifluoromethane sulfonate (Mg-triflate) in the mixture of ADN:IL (1-ethyl-3-methylimidazolium triflate, EMITf) is immobilized for use in Mg-batteries. The structural/morphological properties of the GPE film have been characterized via different physical techniques. The high ionic conductivity (<i>σ</i><sub>RT</sub> = 5.9 mS cm<sup>−1</sup>), wide potential range of oxidative stability (~4.18 V vs. Mg/Mg<sup>2+</sup>), high Mg-ion transport number (<i>t</i><sub>Mg</sub><sup>2+</sup> = 0.67) and thermal stability up to ~160°C ascertain the compatibility of electrolyte film in magnesium batteries with high voltage cathode materials. The comparative studies of the interfacial-stability and Mg-stripping/plating tests on the two symmetrical cells with Mg and Mg/MWCNTs nanocomposite electrodes show the improved reversibility of the electrolyte film with Mg-MWCNTs powder as anode material, compared with pure Mg-powder. The overall results indicate that the GPE based on binary solvent mixture ADN:IL is high performance flexible electrolyte for Mg-batteries with Mg-MWCNTs powder as anode material.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compressor-Driven Titanium and Magnesium Hydride Systems for Thermal Energy Storage: Thermodynamic Assessment 用于热能存储的压缩机驱动钛和氢化镁系统:热力学评估
Energy Storage Pub Date : 2024-09-02 DOI: 10.1002/est2.70028
Uday Raj Singh, Satya Sekhar Bhogilla, Wang Jiawei, Hosokai Sou, Saita Itoko
{"title":"Compressor-Driven Titanium and Magnesium Hydride Systems for Thermal Energy Storage: Thermodynamic Assessment","authors":"Uday Raj Singh,&nbsp;Satya Sekhar Bhogilla,&nbsp;Wang Jiawei,&nbsp;Hosokai Sou,&nbsp;Saita Itoko","doi":"10.1002/est2.70028","DOIUrl":"https://doi.org/10.1002/est2.70028","url":null,"abstract":"<div>\u0000 \u0000 <p>Metal hydrides enable excellent thermal energy storage due to their high energy density, extended storage capability, and cost-effective operation. A metal hydride-driven storage system couples two reactors that assist in thermochemical storage using cyclic operation. Metal hydride reactors, operating at both low and high temperatures, serve for the storage of hydrogen and thermal energy, respectively. The integration of efficient thermal energy storage technology is known to enhance the efficiency of solar thermal systems. In this regard, during the peak hours of solar energy, the high-temperature supply heat can be utilized to store hydrogen gas in the low-temperature reactor, which simultaneously facilitates energy storage in the high-temperature reactor. Moreover, the temperature and energy released from the reactors are highly dependent on the pressure of the gas. As a result, installing a compressor between the low and high-temperature metal hydride reactors can help generate additional outputs, such as a cooling effect. This paper conducts a thermodynamic analysis to assess the system's performance, considering parameters such as thermal storage efficiency, coefficient of performance (COP), and COP<sub>CCH</sub> (combined cooling and heating based COP). Moreover, the performance analysis was carried out for two cases, that is, high-temperature titanium hydride (TiH<sub>2</sub>) and magnesium hydride (MgH<sub>2</sub>). The results show that MgH<sub>2</sub> and TiH<sub>2</sub> achieve a maximum COP<sub>CCH</sub> of 1.08 and 0.9, respectively, and system storage efficiency of 76.15% and 74.34%, respectively. In spite of having lower efficiency than MgH<sub>2</sub>, the TiH<sub>2</sub>-based system has the ability to recover heat at a very high temperature.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of a Simplified Computational Fluid Dynamics Model for a Phase Change Material–Water Finned Heat Exchanger Under Different Orientations 相变材料-水翅片热交换器的简化计算流体动力学模型在不同方向上的性能
Energy Storage Pub Date : 2024-08-28 DOI: 10.1002/est2.70021
Francisco Javier González Gallero, Gabriel González Siles, Ismael Rodríguez Maestre, Juan Luis Foncubierta Blázquez, Luis Pérez-Lombard
{"title":"Performance of a Simplified Computational Fluid Dynamics Model for a Phase Change Material–Water Finned Heat Exchanger Under Different Orientations","authors":"Francisco Javier González Gallero,&nbsp;Gabriel González Siles,&nbsp;Ismael Rodríguez Maestre,&nbsp;Juan Luis Foncubierta Blázquez,&nbsp;Luis Pérez-Lombard","doi":"10.1002/est2.70021","DOIUrl":"https://doi.org/10.1002/est2.70021","url":null,"abstract":"<p>The prevalent numerical models for simulating axially finned heat exchangers with phase change materials (PCMs) and water as the heat transfer fluid rely on computational fluid dynamics (CFD) techniques, with a primary focus on phase change modeling. However, the computational demands of these models, incorporating phase change effects and resolving PCM movement in the liquid state, are substantial. From experiments suggesting that conduction in the solidified PCM around the finned tube dominates heat transfer during the heat discharge process, this article introduces a simplified CFD-based model in which convective flow of the PCM is neglected. The model is experimentally validated using a 1-m-long axially finned heat exchanger prototype with four fins, recording temperatures under different water flow rates and orientations (horizontal and vertical). Results show that the proposed model predicts outlet water temperature satisfactorily, with absolute errors below 1.0°C and 2.2°C for the horizontal and vertical orientations, respectively. Additionally, the model can capture the temperature trend inside the PCM for the horizontal orientation.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/est2.70021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing the Efficacy of an Air Conditioning Unit by Utilizing Phase Change Material With Cylindrical Configuration 利用圆柱形结构的相变材料提高空调设备的效率
Energy Storage Pub Date : 2024-08-27 DOI: 10.1002/est2.70025
Arun Kumar Sao, Arun Arora, Mukesh Kumar Sahu
{"title":"Increasing the Efficacy of an Air Conditioning Unit by Utilizing Phase Change Material With Cylindrical Configuration","authors":"Arun Kumar Sao,&nbsp;Arun Arora,&nbsp;Mukesh Kumar Sahu","doi":"10.1002/est2.70025","DOIUrl":"https://doi.org/10.1002/est2.70025","url":null,"abstract":"<div>\u0000 \u0000 <p>The goal of the current study is to determine how the SST <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>−</mo>\u0000 <mi>ω</mi>\u0000 </mrow>\u0000 <annotation>$$ k-omega $$</annotation>\u0000 </semantics></math> and the standard <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>−</mo>\u0000 <mi>ɛ</mi>\u0000 </mrow>\u0000 <annotation>$$ k-varepsilon $$</annotation>\u0000 </semantics></math> turbulence models prediction on PCM with cylindrical configuration affect AC performance and PCM discharging when coupled with an AC unit. For simulation, 308.15 K and 318.15 K, the inflow air temperature has been considered with a fixed 33.6 L/s intake air flow rate. The low outside temperature charges the PCMs during the night. During the daytime, heated ambient air is cooled by the PCM heat exchanger before passing over the unit condenser. The present outcomes show that using the standard <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>−</mo>\u0000 <mi>ε</mi>\u0000 </mrow>\u0000 <annotation>$$ k-varepsilon $$</annotation>\u0000 </semantics></math> model, the cylindrical PCM has the lowest time of complete melting. The temperature contours demonstrate that turbulence occurs, particularly at higher temperatures, in the PCM melting zone within the solid region. This implies that there is increased convection in this area. The maximum improved percentage in COP increases as the rising input air temperature for both turbulence models increases. The average power saving of AC at 308.15 K of an input air temperature for 83.33 min is predicted by both the standard <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>−</mo>\u0000 <mi>ɛ</mi>\u0000 </mrow>\u0000 <annotation>$$ k-varepsilon $$</annotation>\u0000 </semantics></math> and the SST <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>−</mo>\u0000 <mi>ω</mi>\u0000 </mrow>\u0000 <annotation>$$ k-omega $$</annotation>\u0000 </semantics></math> to be 14.0905 W and 14.1089 W, respectively.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lignocellulosic Biomass-Derived Graphene: Fabrication, Challenges and Its Potential for Hydrogen Storage Application 木质纤维素生物质衍生石墨烯:制造、挑战及其在储氢应用中的潜力
Energy Storage Pub Date : 2024-08-27 DOI: 10.1002/est2.70019
Anjali Singh, Aman John Tudu, Basant Lal, Shafiul Haque, Bhawna Verma
{"title":"Lignocellulosic Biomass-Derived Graphene: Fabrication, Challenges and Its Potential for Hydrogen Storage Application","authors":"Anjali Singh,&nbsp;Aman John Tudu,&nbsp;Basant Lal,&nbsp;Shafiul Haque,&nbsp;Bhawna Verma","doi":"10.1002/est2.70019","DOIUrl":"https://doi.org/10.1002/est2.70019","url":null,"abstract":"<div>\u0000 \u0000 <p>This review explores the utilization of lignocellulosic biomass (LCB) waste in the fabrication of graphene and its applications in hydrogen storage. Several LCB wastes, such as rice straws, coconut shells, wheat straws, and sugarcane bagasse, along with the methodology used and the characteristics of the final graphene, have been discussed in detail. It was found that the coconut shells produced crumpled multilayered graphene, rice husks (RHs) provided a mix of graphene layers and amorphous carbon, wheat straw yielded few-layered graphene, and sugarcane bagasse contributed to different graphene-like materials. This review has also focused on the various synthesis processes, such as carbonization, hydrothermal carbonization (HTC), chemical activation, pyrolysis, chemical vapor deposition (CVD), and Hummers' method for graphene fabrication from LCB waste, along with their advantages and disadvantages, for a better understanding. Various results have been discussed exploring the use of lignocellulosic biomass-derived graphene (LCB-G) and its various modified forms for hydrogen storage applications. Various challenges in graphene fabrication from LCB, such as low yield, product quality, scalability, use of expensive synthesis methods, and toxic chemicals, along with some potential solutions, have been mentioned. Finally, the review concludes with insights into the future of LCB-G and its role in hydrogen storage while identifying some gaps, such as scalability and product quality, for further research and development.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen Storage Using Platinum-Supported Ceria Dispersed on Activated Carbon 利用分散在活性炭上的铂支撑铈储存氢气
Energy Storage Pub Date : 2024-08-26 DOI: 10.1002/est2.70032
Anass Wahby, Zinab Abdelouahab-Reddam, Rachad El Mail, Joaquín Silvestre-Albero, Antonio Sepúlveda-Escribano
{"title":"Hydrogen Storage Using Platinum-Supported Ceria Dispersed on Activated Carbon","authors":"Anass Wahby,&nbsp;Zinab Abdelouahab-Reddam,&nbsp;Rachad El Mail,&nbsp;Joaquín Silvestre-Albero,&nbsp;Antonio Sepúlveda-Escribano","doi":"10.1002/est2.70032","DOIUrl":"https://doi.org/10.1002/est2.70032","url":null,"abstract":"<div>\u0000 \u0000 <p>In the current work, carbon materials were used in the hydrogen adsorption process, specifically as carbons doped with platinum dispersed on ceria. The textural characterization results of the prepared samples and the starting carbon showed the presence of both micro- and mesopores. On the other hand, it has been observed that the specific areas were inversely proportional to the CeO<sub>2</sub> loading. In addition, the amount of adsorbed hydrogen increased after doping the carbon with platinum and, even more, when the carbon was doped with Pt dispersed on ceria (2.2 mg/g at 25°C and 30 bar). However, there was a ceria optimum from which the adsorption capacity decreased (10% wt). The results of temperature-programmed desorption (TPD) of hydrogen indicated a high affinity between Pt and H<sub>2</sub> that enhanced H<sub>2</sub> adsorption process by establishing chemical bonds between the metal particles and H<sub>2</sub>. Precisely, the presence of metallic Pt particles dispersed on ceria considerably promotes the spillover process of hydrogen on carbon. This can be confirmed by hydrogen adsorption–desorption isotherms, that showed that complete desorption of chemisorbed hydrogen required an increase of temperature.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信